In previous courses and in Chapter 1, you learned the following skills, which you’ll use in Chapter 2: naming figures, using notations, drawing diagrams, solving equations, and using postulates.

Prerequisite Skills

VOCABULARY CHECK
Use the diagram to name an example of the described figure.
1. A right angle
2. A pair of vertical angles
3. A pair of supplementary angles
4. A pair of complementary angles

SKILLS AND ALGEBRA CHECK
Describe what the notation means. Draw the figure. *(Review p. 2 for 2.4.)*
5. \(\overline{AB} \)
6. \(\overrightarrow{CD} \)
7. \(EF \)
8. \(\overrightarrow{GH} \)

Solve the equation. *(Review p. 875 for 2.5.)*
9. \(3x + 5 = 20 \)
10. \(4(x - 7) = -12 \)
11. \(5(x + 8) = 4x \)

Name the postulate used. Draw the figure. *(Review pp. 9, 24 for 2.5.)*
12. \(m\angle ABD + m\angle DBC = m\angle ABC \)
13. \(ST + TU = SU \)
In Chapter 2, you will apply the big ideas listed below and reviewed in the Chapter Summary on page 133. You will also use the key vocabulary listed below.

Big Ideas

1. Use inductive and deductive reasoning
2. Understanding geometric relationships in diagrams
3. Writing proofs of geometric relationships

Key Vocabulary

- conjecture, p. 73
- inductive reasoning, p. 73
- counterexample, p. 74
- conditional statement, p. 79
- converse, inverse, contrapositive
- if-then form, p. 79
- hypothesis, conclusion
- negation, p. 79
- equivalent statements, p. 80
- perpendicular lines, p. 81
- biconditional statement, p. 82
- deductive reasoning, p. 87
- proof, p. 112
- two-column proof, p. 112
- theorem, p. 113

Why?

You can use reasoning to draw conclusions. For example, by making logical conclusions from organized information, you can make a layout of a city street.

Animated Geometry

The animation illustrated below for Exercise 29 on page 119 helps you answer this question: Is the distance from the restaurant to the movie theater the same as the distance from the cafe to the dry cleaners?

Other animations for Chapter 2: pages 72, 81, 88, 97, 106, and 125
Geometry, like much of science and mathematics, was developed partly as a result of people recognizing and describing patterns. In this lesson, you will discover patterns yourself and use them to make predictions.

Example 1 Describe a visual pattern

Describe how to sketch the fourth figure in the pattern. Then sketch the fourth figure.

Solution

Each circle is divided into twice as many equal regions as the figure number. Sketch the fourth figure by dividing a circle into eighths. Shade the section just above the horizontal segment at the left.

Example 2 Describe a number pattern

Describe the pattern in the numbers \(-7, -21, -63, -189, \ldots\) and write the next three numbers in the pattern.

Notice that each number in the pattern is three times the previous number.

\[
-7, \quad -21, \quad -63, \quad -189, \ldots
\]

\[\times 3 \quad \times 3 \quad \times 3 \quad \times 3\]

Continue the pattern. The next three numbers are \(-567, -1701, \text{ and } -5103\).

Guided Practice for Examples 1 and 2

1. Sketch the fifth figure in the pattern in Example 1.
2. *Describe* the pattern in the numbers 5.01, 5.03, 5.05, 5.07, \ldots Write the next three numbers in the pattern.
Example 3 Make a conjecture

Given five collinear points, make a conjecture about the number of ways to connect different pairs of the points.

Solution

Make a table and look for a pattern. Notice the pattern in how the number of connections increases. You can use the pattern to make a conjecture.

<table>
<thead>
<tr>
<th>Number of points</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Number of connections</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>?</td>
</tr>
</tbody>
</table>

Conjecture You can connect five collinear points \(6 + 4\), or 10 different ways.

Example 4 Make and test a conjecture

Numbers such as 3, 4, and 5 are called **consecutive numbers**. Make and test a conjecture about the sum of any three consecutive numbers.

Solution

- **Step 1** Find a pattern using a few groups of small numbers.

 \[
 3 + 4 + 5 = 12 = 4 \cdot 3 \\
 7 + 8 + 9 = 24 = 8 \cdot 3 \\
 10 + 11 + 12 = 33 = 11 \cdot 3 \\
 16 + 17 + 18 = 51 = 17 \cdot 3
 \]

 Conjecture The sum of any three consecutive integers is three times the second number.

- **Step 2** Test your conjecture using other numbers. For example, test that it works with the groups \(-1, 0, 1\) and \(100, 101, 102\).

 \[
 -1 + 0 + 1 = 0 = 0 \cdot 3 \\
 100 + 101 + 102 = 303 = 101 \cdot 3
 \]

Guided Practice for Examples 3 and 4

3. Suppose you are given seven collinear points. Make a conjecture about the number of ways to connect different pairs of the points.

4. Make and test a conjecture about the sign of the product of any three negative integers.
DISPROVING CONJECTURES To show that a conjecture is true, you must show that it is true for all cases. You can show that a conjecture is false, however, by simply finding one counterexample. A counterexample is a specific case for which the conjecture is false.

EXAMPLE 5 Find a counterexample

A student makes the following conjecture about the sum of two numbers. Find a counterexample to disprove the student’s conjecture.

Conjecture The sum of two numbers is always greater than the larger number.

Solution

To find a counterexample, you need to find a sum that is less than the larger number.

\[-2 + -3 = -5\]
\[-5 < -3\]

Because a counterexample exists, the conjecture is false.

EXAMPLE 6 TAKS PRACTICE: Multiple Choice

Which conjecture could a high school athletic director make based on the graph at the right?

A. More boys play soccer than girls.
B. More boys are playing soccer today than in 1985.
C. More people played soccer in 2000 than in the past because the 1994 World Cup games were held in the United States.

Solution

Choices A and C can be eliminated because they refer to facts not presented by the graph. Choice B is a reasonable conjecture because the graph shows an increase over time, but does not give any reasons for that increase.

The correct answer is B. A B C D

Guided Practice for Examples 5 and 6

5. Find a counterexample to show that the following conjecture is false. **Conjecture** The value of \(x^2\) is always greater than the value of \(x\).

6. Use the graph in Example 6 to make a conjecture that could be true. Give an explanation that supports your reasoning.
1. **VOCABULARY** Write a definition of *conjecture* in your own words.

2. **WRITING** The word *counter* has several meanings. Look up the word in a dictionary. Identify which meaning helps you understand the definition of *counterexample*.

SKETCHING VISUAL PATTERNS Sketch the next figure in the pattern.

3.

4.

5. **MULTIPLE CHOICE** What is the next figure in the pattern?

 - A
 - B
 - C
 - D

DESCRIBING NUMBER PATTERNS Describe the pattern in the numbers. Write the next number in the pattern.

6. 1, 5, 9, 13, . . .

7. 3, 12, 48, 192, . . .

8. 10, 5, 2.5, 1.25, . . .

9. 4, 3, 1, −2, . . .

10. 1, \(\frac{2}{3}\), \(\frac{1}{3}\), 0, . . .

11. −5, −2, 4, 13, . . .

MAKING CONJECTURES In Exercises 12 and 13, copy and complete the conjecture based on the pattern you observe in the specific cases.

12. Given seven noncollinear points, make a conjecture about the number of ways to connect different pairs of the points.

<table>
<thead>
<tr>
<th>Number of points</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Number of connections</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>?</td>
</tr>
</tbody>
</table>

 Conjecture You can connect seven noncollinear points ? different ways.

13. Use these sums of odd integers: \(3 + 7 = 10\), \(1 + 7 = 8\), \(17 + 21 = 38\)

 Conjecture The sum of any two odd integers is .
FINDING COUNTEREXAMPLES In Exercises 14–17, show the conjecture is false by finding a counterexample.

14. If the product of two numbers is positive, then the two numbers must both be positive.
15. The product \((a + b)^2\) is equal to \(a^2 + b^2\), for \(a \neq 0\) and \(b \neq 0\).
16. All prime numbers are odd.
17. If the product of two numbers is even, then the two numbers must both be even.

18. ERROR ANALYSIS Describe and correct the error in the student’s reasoning.

19. TAKS REASONING Explain why only one counterexample is necessary to show that a conjecture is false.

ALGEBRA In Exercises 20 and 21, write a function rule relating \(x\) and \(y\).

20. | | | |
---|---|---|
\(x\) | 1 | 2 | 3 |
\(y\) | −3 | −2 | −1 |
21. | | | |
---|---|---|
\(x\) | 1 | 2 | 3 |
\(y\) | 2 | 4 | 6 |

22. TAKS REASONING What is the first number in the pattern?

\[?, ?, ?, 81, 243, 729\]

\(\text{A} \quad 1\) \hspace{1cm} \(\text{B} \quad 3\) \hspace{1cm} \(\text{C} \quad 9\) \hspace{1cm} \(\text{D} \quad 27\)

MAKING PREDICTIONS Describe a pattern in the numbers. Write the next number in the pattern. Graph the pattern on a number line.

23. \(2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \ldots\)
24. \(1, 8, 27, 64, 125, \ldots\)
25. \(0.45, 0.7, 0.95, 1.2, \ldots\)

26. \(1, 3, 6, 10, 15, \ldots\)
27. \(2, 20, 100, 50, \ldots\)
28. \(0.4(6), 0.4(6)^2, 0.4(6)^3, \ldots\)

29. ALGEBRA Consider the pattern \(5, 5r, 5r^2, 5r^3, \ldots\). For what values of \(r\) will the values of the numbers in the pattern be increasing? For what values of \(r\) will the values of the numbers be decreasing? Explain.

30. REASONING A student claims that the next number in the pattern \(1, 2, 4, \ldots\) is 8, because each number shown is two times the previous number. Is there another description of the pattern that will give the same first three numbers but will lead to a different pattern? Explain.

31. CHALLENGE Consider the pattern \(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\).
 a. Describe the pattern. Write the next three numbers in the pattern.
 b. What is happening to the values of the numbers?
 c. Make a conjecture about later numbers. Explain your reasoning.
32. **BASEBALL** You are watching a pitcher who throws two types of pitches, a fastball (F, in white below) and a curveball (C, in red below). You notice that the order of pitches was F, C, F, C, F, F, F, C, F, C, F, F. Assuming that this pattern continues, predict the next five pitches.

33. **STATISTICS** The scatter plot shows the number of person-to-person e-mail messages sent each year. Make a conjecture that could be true. Give an explanation that supports your reasoning.

34. **VISUAL REASONING** Use the pattern below. Each figure is made of squares that are 1 unit by 1 unit.

 a. Find the distance around each figure. Organize your results in a table.
 b. Use your table to describe a pattern in the distances.
 c. Predict the distance around the 20th figure in this pattern.

35. **MULTIPLE REPRESENTATIONS** Use the given function table relating x and y.

 a. **Making a Table** Copy and complete the table.
 b. **Drawing a Graph** Graph the table of values.
 c. **Writing an Equation** Describe the pattern in words and then write an equation relating x and y.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>−3</td>
<td>−5</td>
</tr>
<tr>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>?</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>?</td>
</tr>
<tr>
<td>15</td>
<td>31</td>
</tr>
</tbody>
</table>
36. **TAKS REASONING** Your class is selling raffle tickets for $.25 each.
 a. Make a table showing your income if you sold 0, 1, 2, 3, 4, 5, 10, or 20 raffle tickets.
 b. Graph your results. Describe any pattern you see.
 c. Write an equation for your income y if you sold x tickets.
 d. If your class paid $14 for the raffle prize, at least how many tickets does your class need to sell to make a profit? Explain.
 e. How many tickets does your class need to sell to make a profit of $50?

37. **FIBONACCI NUMBERS** The Fibonacci numbers are shown below.
 Use the Fibonacci numbers to answer the following questions.

 \[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots\]
 a. Copy and complete: After the first two numbers, each number is the ___ of the ___ previous numbers.
 b. Write the next three numbers in the pattern.
 c. Research This pattern has been used to describe the growth of the nautilus shell. Use an encyclopedia or the Internet to find another real-world example of this pattern.

38. **CHALLENGE** Set A consists of all multiples of 5 greater than 10 and less than 100. Set B consists of all multiples of 8 greater than 16 and less than 100. Show that each conjecture is false by finding a counterexample.
 a. Any number in set A is also in set B.
 b. Any number less than 100 is either in set A or in set B.
 c. No number is in both set A and set B.

39. **TAKS PRACTICE** Which expression can be used to find the values of $f(x)$ in the table below? **TAKS Obj. 1**

\[
\begin{array}{c|ccccccc}
 x & 1 & 2 & 3 & 4 & 5 & 6 \\
 \hline
 f(x) & -2 & 3 & 8 & 13 & 18 & 23 \\
\end{array}
\]

- [A] $-2x$
- [B] $x - 3$
- [C] $2x + 5$
- [D] $5x - 7$

40. **TAKS PRACTICE** What is the approximate volume of the cylinder shown at the right? **TAKS Obj. 8**

\[
\begin{array}{l}
\text{[F]} 147 \text{ cm}^3 \\
\text{[G]} 332 \text{ cm}^3 \\
\text{[H]} 589 \text{ cm}^3 \\
\text{[J]} 664 \text{ cm}^3 \\
\end{array}
\]
2.2 Analyze Conditional Statements

Key Vocabulary
- conditional statement
- converse, inverse, contrapositive
- if-then form
- hypothesis, conclusion
- negation
- equivalent statements
- perpendicular lines
- biconditional statement

A **conditional statement** is a logical statement that has two parts, a hypothesis and a conclusion. When a conditional statement is written in **if-then form**, the “if” part contains the **hypothesis** and the “then” part contains the **conclusion**. Here is an example:

If it is raining, then there are clouds in the sky.

Hypothesis

Hypothesis

Conclusion

Example 1 Rewrite a statement in if-then form

Rewrite the conditional statement in if-then form.

a. All birds have feathers.

b. Two angles are supplementary if they are a linear pair.

Solution

First, identify the **hypothesis** and the **conclusion**. When you rewrite the statement in if-then form, you may need to reword the hypothesis or conclusion.

a. **All birds** have **feathers**.

 If an animal is a bird, then **it has feathers**.

b. **Two angles are supplementary** if **they are a linear pair**.

 If two angles are a linear pair, then **they are supplementary**.

Guided Practice

Rewrite the conditional statement in if-then form.

1. All 90° angles are right angles.
2. \(2x + 7 = 1\), because \(x = -3\).
3. When \(n = 9\), \(n^2 = 81\).
4. Tourists at the Alamo are in Texas.

Negation The **negation** of a statement is the **opposite** of the original statement. Notice that Statement 2 is already negative, so its negation is positive.

Statement 1 The ball is red.

Negation 1 The ball is **not** red.

Statement 2 The cat is **not** black.

Negation 2 The cat is **black**.
VERIFYING STATEMENTS Conditional statements can be true or false. To show that a conditional statement is true, you must prove that the conclusion is true every time the hypothesis is true. To show that a conditional statement is false, you need to give only one counterexample.

RELATED CONDITIONALS To write the converse of a conditional statement, exchange the hypothesis and conclusion.

To write the inverse of a conditional statement, negate both the hypothesis and the conclusion. To write the contrapositive, first write the converse and then negate both the hypothesis and the conclusion.

<table>
<thead>
<tr>
<th>Conditional statement</th>
<th>Converse</th>
<th>Inverse</th>
<th>Contrapositive</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $m \angle A = 99^\circ$, then $\angle A$ is obtuse.</td>
<td>If $\angle A$ is obtuse, then $m \angle A = 99^\circ$.</td>
<td>If $m \angle A \neq 99^\circ$, then $\angle A$ is not obtuse.</td>
<td>If $\angle A$ is not obtuse, then $m \angle A \neq 99^\circ$.</td>
</tr>
</tbody>
</table>

EXAMPLE 2 Write four related conditional statements

Write the if-then form, the converse, the inverse, and the contrapositive of the conditional statement “Guitar players are musicians.” Decide whether each statement is true or false.

Solution

If-then form If you are a guitar player, then you are a musician. True, guitar players are musicians.

Converse If you are a musician, then you are a guitar player. False, not all musicians play the guitar.

Inverse If you are not a guitar player, then you are not a musician. False, even if you don’t play a guitar, you can still be a musician.

Contrapositive If you are not a musician, then you are not a guitar player. True, a person who is not a musician cannot be a guitar player.

GUIDED PRACTICE for Example 2

Write the converse, the inverse, and the contrapositive of the conditional statement. Tell whether each statement is true or false.

5. If a dog is a Great Dane, then it is large.
6. If a polygon is equilateral, then the polygon is regular.

EQUIVALENT STATEMENTS A conditional statement and its contrapositive are either both true or both false. Similarly, the converse and inverse of a conditional statement are either both true or both false. Pairs of statements such as these are called equivalent statements. In general, when two statements are both true or both false, they are called equivalent statements.
DEFINITIONS You can write a definition as a conditional statement in if-then form or as its converse. Both the conditional statement and its converse are true. For example, consider the definition of perpendicular lines.

KEY CONCEPT

Perpendicular Lines

Definition If two lines intersect to form a right angle, then they are **perpendicular lines**.

The definition can also be written using the converse: If two lines are perpendicular lines, then they intersect to form a right angle.

You can write “line \(l \) is perpendicular to line \(m \)” as \(l \perp m \).

EXAMPLE 3 Use definitions

Decide whether each statement about the diagram is true. Explain your answer using the definitions you have learned.

- \(\overrightarrow{AC} \perp \overrightarrow{BD} \)
- \(\angle AEB \) and \(\angle CEB \) are a linear pair.
- \(\overrightarrow{EA} \) and \(\overrightarrow{EB} \) are opposite rays.

Solution

- This statement is **true**. The right angle symbol in the diagram indicates that the lines intersect to form a right angle. So you can say the lines are perpendicular.
- This statement is **true**. By definition, if the noncommon sides of adjacent angles are opposite rays, then the angles are a linear pair. Because \(\overrightarrow{EA} \) and \(\overrightarrow{EC} \) are opposite rays, \(\angle AEB \) and \(\angle CEB \) are a linear pair.
- This statement is **false**. Point \(E \) does not lie on the same line as \(A \) and \(B \), so the rays are not opposite rays.

GUIDED PRACTICE for Example 3

Use the diagram shown. Decide whether each statement is true. *Explain* your answer using the definitions you have learned.

- \(\angle JMF \) and \(\angle FMG \) are supplementary.
- Point \(M \) is the midpoint of \(FH \).
- \(\angle JMF \) and \(\angle HMG \) are vertical angles.
- \(FH \perp FG \)
BICONDITIONAL STATEMENTS When a conditional statement and its converse are both true, you can write them as a single biconditional statement. A biconditional statement is a statement that contains the phrase “if and only if.” Any valid definition can be written as a biconditional statement.

EXAMPLE 4 Write a biconditional

Write the definition of perpendicular lines as a biconditional.

Solution

Definition If two lines intersect to form a right angle, then they are perpendicular.

Converse If two lines are perpendicular, then they intersect to form a right angle.

Biconditional Two lines are perpendicular if and only if they intersect to form a right angle.

GUIDED PRACTICE for Example 4

11. Rewrite the definition of right angle as a biconditional statement.

12. Rewrite the statements as a biconditional.
 If Mary is in theater class, she will be in the fall play. If Mary is in the fall play, she must be taking theater class.

2.2 EXERCISES

1. VOCABULARY Copy and complete: The ___ of a conditional statement is found by switching the hypothesis and the conclusion.

2. WRITING Write a definition for the term collinear points, and show how the definition can be interpreted as a biconditional.

REWRITING STATEMENTS Rewrite the conditional statement in if-then form.

3. When \(x = 6 \), \(x^2 = 36 \).

4. The measure of a straight angle is 180°.

5. Only people who are registered are allowed to vote.

6. ERROR ANALYSIS Describe and correct the error in writing the if-then statement.
 Given statement: All high school students take four English courses.
 If-then statement: If a high school student takes four courses, then all four are English courses.
WRITING RELATED STATEMENTS For the given statement, write the if-then form, the converse, the inverse, and the contrapositive.

1. The complementary angles add to 90°.
2. Ants are insects.
3. $3x + 10 = 16$, because $x = 2$.
4. A midpoint bisects a segment.

ANALYZING STATEMENTS Decide whether the statement is **true** or **false**. If false, provide a counterexample.

11. If a polygon has five sides, then it is a regular pentagon.
12. If $m\angle A = 85^\circ$, then the measure of the complement of $\angle A$ is 5°.
13. Supplementary angles are always linear pairs.
14. If a number is an integer, then it is rational.
15. If a number is a real number, then it is irrational.

USING DEFINITIONS Decide whether each statement about the diagram is true. Explain your answer using the definitions you have learned.

16. $m\angle ABC = 90^\circ$
17. $\overrightarrow{PQ} \perp \overrightarrow{ST}$
18. $m\angle 2 + m\angle 3 = 180^\circ$

REWRITING STATEMENTS In Exercises 19–21, rewrite the definition as a biconditional statement.

19. An angle with a measure between 90° and 180° is called **obtuse**.
20. Two angles are a **linear pair** if they are adjacent angles whose noncommon sides are opposite rays.
21. **Coplanar points** are points that lie in the same plane.

DEFINITIONS Determine whether the statement is a valid definition.

22. If two rays are **opposite rays**, then they have a common endpoint.
23. If the sides of a triangle are all the same length, then the triangle is **equilateral**.
24. If an angle is a **right angle**, then its measure is greater than that of an acute angle.

25. **TAKS REASONING** Which statement has the same meaning as the given statement?

GIVEN You can go to the movie after you do your homework.

A. If you do your homework, then you can go to the movie afterwards.
B. If you do not do your homework, then you can go to the movie afterwards.
C. If you cannot go to the movie afterwards, then do your homework.
D. If you are going to the movie afterwards, then do not do your homework.
ALGEBRA Write the converse of each true statement. Tell whether the converse is true. If false, explain why.

26. If $x > 4$, then $x > 0$.
27. If $x < 6$, then $-x > -6$.
28. If $x \leq -x$, then $x \leq 0$.

29. TAKS REASONING Write a statement that is true but whose converse is false.

30. CHALLENGE Write a series of if-then statements that allow you to find the measure of each angle, given that $m\angle 1 = 90^\circ$. Use the definition of linear pairs.

In Exercises 31 and 32, use the information about volcanoes to determine whether the biconditional statement is true or false. If false, provide a counterexample.

VOLCANOES Solid fragments are sometimes ejected from volcanoes during an eruption. The fragments are classified by size, as shown in the table.

<table>
<thead>
<tr>
<th>Type of fragment</th>
<th>Diameter d (millimeters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash</td>
<td>$d < 2$</td>
</tr>
<tr>
<td>Lapilli</td>
<td>$2 \leq d \leq 64$</td>
</tr>
<tr>
<td>Block or bomb</td>
<td>$d > 64$</td>
</tr>
</tbody>
</table>

31. A fragment is called a *block or bomb* if and only if its diameter is greater than 64 millimeters.

32. A fragment is called a *lapilli* if and only if its diameter is less than 64 millimeters.

33. TAKS REASONING How can you show that the statement, “If you play a sport, then you wear a helmet.” is false? Explain.

34. TAKS REASONING You measure the heights of your classmates to get a data set.
 a. Tell whether this statement is true: If x and y are the least and greatest values in your data set, then the mean of the data is between x and y. Explain your reasoning.
 b. Write the converse of the statement in part (a). Is the converse true? Explain.
 c. Copy and complete the statement using *mean*, *median*, or *mode* to make a conditional that is true for any data set. Explain your reasoning.

 Statement If a data set has a mean, a median, and a mode, then the of the data set will always be one of the measurements.

35. TAKS REASONING The Venn diagram below represents all of the musicians at a high school. Write an if-then statement that describes a relationship between the various groups of musicians.
36. **MULTI-STEP PROBLEM** The statements below describe three ways that rocks are formed. Use these statements in parts (a)–(c).

- Igneous rock is formed from the cooling of molten rock.
- Sedimentary rock is formed from pieces of other rocks.
- Metamorphic rock is formed by changing temperature, pressure, or chemistry.

a. Write each statement in if-then form.
b. Write the converse of each of the statements in part (a). Is the converse of each statement true? Explain your reasoning.
c. Write a true if-then statement about rocks. Is the converse of your statement true or false? Explain your reasoning.

37. **ALGEBRA** Can the statement, “If \(x^2 - 10 = x + 2 \), then \(x = 4 \),” be combined with its converse to form a true biconditional?

38. **REASONING** You are given that the contrapositive of a statement is true. Will that help you determine whether the statement can be written as a true biconditional? Explain.

39. **CHALLENGE** Suppose each of the following statements is true. What can you conclude? Explain your answer.

- If it is Tuesday, then I have art class.
- It is Tuesday.
- Each school day, I have either an art class or study hall.
- If it is Friday, then I have gym class.
- Today, I have either music class or study hall.

40. **TAKS PRACTICE** The table below shows the results of spinning the spinner at the right. Based on these results, what is the experimental probability that the spinner lands on red? **TAKS Obj. 9**

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>4</td>
</tr>
<tr>
<td>Blue</td>
<td>1</td>
</tr>
<tr>
<td>Purple</td>
<td>8</td>
</tr>
<tr>
<td>Green</td>
<td>5</td>
</tr>
<tr>
<td>Yellow</td>
<td>7</td>
</tr>
</tbody>
</table>

\(\text{A} \) 0.16 \hspace{1cm} \(\text{B} \) 0.2 \hspace{1cm} \(\text{C} \) 0.25 \hspace{1cm} \(\text{D} \) 0.4

41. **TAKS PRACTICE** Which of the following is not shown in the figure on the right? **TAKS Obj. 6**

- \(\text{F} \) \(\overrightarrow{XY} \)
- \(\text{G} \) \(\overrightarrow{ZW} \)
- \(\text{H} \) \(\overrightarrow{XW} \)
- \(\text{J} \) \(\overrightarrow{XW} \)
2.3 Logic Puzzles

MATERIALS • graph paper • pencils

QUESTION How can reasoning be used to solve a logic puzzle?

EXPLORE Solve a logic puzzle

Using the clues below, you can determine an important mathematical contribution and interesting fact about each of five mathematicians.

Copy the chart onto your graph paper. Use the chart to keep track of the information given in Clues 1–7. Place an X in a box to indicate a definite “no.” Place an O in a box to indicate a definite “yes.”

Clue 1 Pythagoras had his contribution named after him. He was known to avoid eating beans.

Clue 2 Albert Einstein considered Emmy Noether to be one of the greatest mathematicians and used her work to show the theory of relativity.

Clue 3 Anaxagoras was the first to theorize that the moon’s light is actually the sun’s light being reflected.

Clue 4 Julio Rey Pastor wrote a book at age 17.

Clue 5 The mathematician who is fluent in Latin contributed to the study of differential calculus.

Clue 6 The mathematician who did work with n-dimensional geometry was not the piano player.

Clue 7 The person who first used perspective drawing to make scenery for plays was not Maria Agnesi or Julio Rey Pastor.

DRAW CONCLUSIONS Use your observations to complete these exercises

1. Write Clue 4 as a conditional statement in if-then form. Then write the contrapositive of the statement. Explain why the contrapositive of this statement is a helpful clue.

2. Explain how you can use Clue 6 to figure out who played the piano.

3. Explain how you can use Clue 7 to figure out who worked with perspective drawing.
2.3 Apply Deductive Reasoning

Key Vocabulary
- deductive reasoning

DEDUCTIVE REASONING

You used inductive reasoning to form a conjecture.
Now you will use deductive reasoning to form a logical argument.
So you can reach logical conclusions about locations, as in Ex. 18.

Example 1 Use the Law of Detachment

Use the Law of Detachment to make a valid conclusion in the true situation.

a. If two segments have the same length, then they are congruent. You know that $BC = XY$.

b. Mary goes to the movies every Friday and Saturday night. Today is Friday.

Solution

a. Because $BC = XY$ satisfies the hypothesis of a true conditional statement, the conclusion is also true. So, $BC \cong XY$.

b. First, identify the hypothesis and the conclusion of the first statement. The hypothesis is “If it is Friday or Saturday night,” and the conclusion is “then Mary goes to the movies.” “Today is Friday” satisfies the hypothesis of the conditional statement, so you can conclude that Mary will go to the movies tonight.

Laws of Logic

Law of Detachment

If the hypothesis of a true conditional statement is true, then the conclusion is also true.

Law of Syllogism

If p, then q.
If q, then r.
If p, then r.

If these statements are true, then this statement is true.
GUIDED PRACTICE for Examples 1 and 2

1. If $90^\circ < m\angle R < 180^\circ$, then $\angle R$ is obtuse. The measure of $\angle R$ is 155°. Using the Law of Detachment, what statement can you make?

2. If Jenelle gets a job, then she can afford a car. If Jenelle can afford a car, then she will drive to school. Using the Law of Syllogism, what statement can you make?

State the law of logic that is illustrated.

3. If you get an A or better on your math test, then you can go to the movies. If you go to the movies, then you can watch your favorite actor. If you get an A or better on your math test, then you can watch your favorite actor.

4. If $x > 12$, then $x + 9 > 20$. The value of x is 14. Therefore, $x + 9 > 20$.

ANALYZING REASONING In Geometry, you will frequently use inductive reasoning to make conjectures. You will also be using deductive reasoning to show that conjectures are true or false. You will need to know which type of reasoning is being used.
EXAMPLE 3 Use inductive and deductive reasoning

ALGEBRA What conclusion can you make about the product of an even integer and any other integer?

Solution

STEP 1 Look for a pattern in several examples. Use inductive reasoning to make a conjecture.

\[
(\text{-}2)(2) = -4, \quad (\text{-}1)(2) = -2, \quad 2(2) = 4, \quad 3(2) = 6,
\]

\[
(\text{-}2)(\text{-}4) = 8, \quad (\text{-}1)(\text{-}4) = 4, \quad 2(\text{-}4) = -8, \quad 3(\text{-}4) = -12
\]

Conjecture Even integer • Any integer = Even integer

STEP 2 Let \(n \) and \(m \) each be any integer. Use deductive reasoning to show the conjecture is true.

- \(2n \) is an even integer because any integer multiplied by 2 is even.
- \(2nm \) represents the product of an even integer and any integer \(m \).
- \(2nm \) is the product of 2 and an integer \(nm \). So, \(2nm \) is an even integer.

\(\Rightarrow \) The product of an even integer and any integer is an even integer.

EXAMPLE 4 Reasoning from a graph

Tell whether the statement is the result of inductive reasoning or deductive reasoning. Explain your choice.

a. The northern elephant seal requires more strokes to surface the deeper it dives.

b. The northern elephant seal uses more strokes to surface from 60 feet than from 250 feet.

Solution

a. Inductive reasoning, because it is based on a pattern in the data

b. Deductive reasoning, because you are comparing values that are given on the graph

GUIDED PRACTICE for Examples 3 and 4

5. Use inductive reasoning to make a conjecture about the sum of a number and itself. Then use deductive reasoning to show the conjecture is true.

6. Use inductive reasoning to write another statement about the graph in Example 4. Then use deductive reasoning to write another statement.
1. **VOCABULARY** Copy and complete: If the hypothesis of a true if-then statement is true, then the conclusion is also true by the Law of **?**.

WRITING Use deductive reasoning to make a statement about the picture.

2.

3.

LAW OF DETACHMENT Make a valid conclusion in the situation.

4. If the measure of an angle is 90°, then it is a right angle. The measure of ∠A is 90°.

5. If \(x > 12\), then \(-x < -12\). The value of \(x\) is 15.

6. If a book is a biography, then it is nonfiction. You are reading a biography.

LAW OF SYLLOGISM In Exercises 7–10, write the statement that follows from the pair of statements that are given.

7. If a rectangle has four equal side lengths, then it is a square. If a polygon is a square, then it is a regular polygon.

8. If \(y > 0\), then \(2y > 0\). If \(2y > 0\), then \(2y - 5 \neq -5\).

9. If you play the clarinet, then you play a woodwind instrument. If you play a woodwind instrument, then you are a musician.

10. If \(a = 3\), then \(5a = 15\). If \(\frac{1}{2}a = 1\frac{1}{2}\), then \(a = 3\).

EXAMPLE 1 on p. 87
for Exs. 4–6

EXAMPLE 2 on p. 88
for Exs. 7–10

EXAMPLE 3 on p. 89
for Ex. 11

REASONING What can you say about the sum of an even integer and an even integer? Use inductive reasoning to form a conjecture. Then use deductive reasoning to show that the conjecture is true.

TAKS REASONING If two angles are vertical angles, then they have the same measure. You know that ∠A and ∠B are vertical angles. Using the Law of Detachment, which conclusion could you make?

- **A** \(m\angle A > m\angle B\)
- **B** \(m\angle A = m\angle B\)
- **C** \(m\angle A + m\angle B = 90°\)
- **D** \(m\angle A + m\angle B = 180°\)

ERROR ANALYSIS Describe and correct the error in the argument: “If two angles are a linear pair, then they are supplementary. Angles \(C\) and \(D\) are supplementary, so the angles are a linear pair.”
2.3 Apply Deductive Reasoning

USING THE LAWS OF LOGIC

In Exercises 16 and 17, what conclusions can you make using the true statement?

16. CAR COSTS If you save $2000, then you can buy a car. You have saved $1200.

17. PROFIT The bakery makes a profit if its revenue is greater than its costs. You will get a raise if the bakery makes a profit.

USING DEDUCTIVE REASONING Select the word(s) that make(s) the conclusion true.

18. Mesa Verde National Park is in Colorado. Simone vacationed in Colorado. So, Simone (must have, may have, or never) visited Mesa Verde National Park.

19. The cliff dwellings in Mesa Verde National Park are accessible to visitors only when accompanied by a park ranger. Billy is at a cliff dwelling in Mesa Verde National Park. So, Billy (is, may be, is not) with a park ranger.

14. **ALGEBRA** Use the segments in the coordinate plane.

 a. Use the distance formula to show that the segments are congruent.

 b. Make a conjecture about some segments in the coordinate plane that are congruent to the given segments. Test your conjecture, and explain your reasoning.

 c. Let one endpoint of a segment be \((x, y)\). Use algebra to show that segments drawn using your conjecture will always be congruent.

 d. A student states that the segments described below will each be congruent to the ones shown above. Determine whether the student is correct. Explain your reasoning.

 \[\overline{MN}, \text{with endpoints } M(3, 5) \text{ and } N(5, 2) \]
 \[\overline{PQ}, \text{with endpoints } P(1, -1) \text{ and } Q(4, -3) \]
 \[\overline{RS}, \text{with endpoints } R(-2, 2) \text{ and } S(1, 4) \]

15. **CHALLENGE** Make a conjecture about whether the Law of Syllogism works when used with the contrapositives of a pair of statements. Use this pair of statements to justify your conjecture.

 If a creature is a wombat, then it is a marsupial.
 If a creature is a marsupial, then it has a pouch.
Geologists use the Mohs scale to determine a mineral’s hardness. Using the scale, a mineral with a higher rating will leave a scratch on a mineral with a lower rating. Geologists use scratch tests to help identify an unknown mineral.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Talc</th>
<th>Gypsum</th>
<th>Calcite</th>
<th>Fluorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohs rating</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

a. Use the table to write three if-then statements such as “If talc is scratched against gypsum, then a scratch mark is left on the talc.”

b. You must identify four minerals labeled A, B, C, and D. You know that the minerals are the ones shown in the table. The results of your scratch tests are shown below. What can you conclude? *Explain* your reasoning.

Mineral A is scratched by Mineral B.

Mineral C is scratched by all three of the other minerals.

c. What additional test(s) can you use to identify all the minerals in part (b)?

REASONING In Exercises 21 and 22, decide whether inductive or deductive reasoning is used to reach the conclusion. *Explain* your reasoning.

21. The rule at your school is that you must attend all of your classes in order to participate in sports after school. You played in a soccer game after school on Monday. Therefore, you went to all of your classes on Monday.

22. For the past 5 years, your neighbor goes on vacation every July 4th and asks you to feed her hamster. You conclude that you will be asked to feed her hamster on the next July 4th.

23. **TAKS REASONING** Let an even integer be $2n$ and an odd integer be $2n + 1$. *Explain* why the sum of an even integer and an odd integer is an odd integer.

24. **LITERATURE** George Herbert wrote a poem, *Jacula Prudentum*, that includes the statements shown. Use the Law of Syllogism to write a new conditional statement. *Explain* your reasoning.

25. Arlo bought a hot dog.

26. Arlo and Mia went to the game.

27. Mia bought a hot dog.

28. Arlo had some of Mia’s popcorn.
29. **CHALLENGE** Use these statements to answer parts (a)–(c).

Adam says Bob lies.
Bob says Charlie lies.
Charlie says Adam and Bob both lie.

a. If Adam is telling the truth, then Bob is lying. What can you conclude about Charlie’s statement?
b. Assume Adam is telling the truth. *Explain* how this leads to a contradiction.
c. Who is telling the truth? Who is lying? How do you know?

Mixed Review for TAKS

TAKS Practice The height of a rectangular window is 1.62 times its width. If the perimeter of the window is 524 centimeters, which system of equations can be used to find its dimensions? **TAKS Obj. 4**

A. \(h = w + 1.62 \) \(2(h + w) = 524 \)
B. \(h = 1.62w \) \(2(h + w) = 524 \)
C. \(h = w + 1.62 \) \(2h + 3.24w = 524 \)
D. \(h = 1.62w \) \(2h + 3.24w = 524 \)

TAKS Practice Drew is making a solid model pyramid for his history class. The base of the pyramid is 100 square centimeters and Drew uses 236 cubic centimeters of clay for the model. Which value is closest to the height of the pyramid? **TAKS Obj. 8**

F. 6 cm
G. 7 cm
H. 8 cm
J. 9 cm

TAKS Practice The side length of a square is represented by the expression \(4x^3 y^5 \). Which expression represents the area of the square? **TAKS Obj. 5**

A. \(4x^9 y^{25} \)
B. \(8x^6 y^{10} \)
C. \(16x^6 y^{10} \)
D. \(16x^9 y^{25} \)

Quiz for Lessons 2.1–2.3

Show the conjecture is false by finding a counterexample. *(p. 72)*

1. If the product of two numbers is positive, then the two numbers must be negative.
2. The sum of two numbers is always greater than the larger number.

In Exercises 3 and 4, write the if-then form and the contrapositive of the statement. *(p. 79)*

3. Points that lie on the same line are called collinear points.
4. \(2x - 8 = 2 \), because \(x = 5 \).

5. Make a valid conclusion about the following statements:
If it is above 90°F outside, then I will wear shorts. It is 98°F. *(p. 87)*
6. *Explain* why a number that is divisible by a multiple of 3 is also divisible by 3. *(p. 87)*
Symbolic Notation and Truth Tables

Goal Use symbolic notation to represent logical statements.

Conditional statements can be written using *symbolic notation*, where letters are used to represent statements. An arrow (→), read “implies,” connects the hypothesis and conclusion. To write the negation of a statement \(p \) you write the symbol for negation (\(\sim \)) before the letter. So, “not \(p \)” is written \(\sim p \).

KEY CONCEPT

Symbolic Notation

Let \(p \) be “the angle is a right angle” and let \(q \) be “the measure of the angle is 90°.”

<table>
<thead>
<tr>
<th>Type</th>
<th>Statement</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditional</td>
<td>(p \rightarrow q)</td>
<td>If (p), then (q). Example: If an angle is a right angle, then its measure is 90°.</td>
</tr>
<tr>
<td>Converse</td>
<td>(q</td>
<td></td>
</tr>
</tbody>
</table>
<p>ightarrow p) | If (q), then (p). Example: If the measure of an angle is 90°, then the angle is a right angle. |
| Inverse | (\sim p \rightarrow \sim q) | If not (p), then not (q). Example: If an angle is not a right angle, then its measure is not 90°. |
| Contrapositive | (\sim q \rightarrow \sim p) | If not (q), then not (p). If the measure of an angle is not 90°, then the angle is not a right angle. |</p>

Biconditional

\(p \) if and only if \(q \)

Example: An angle is a right angle if and only if its measure is 90°.

Example 1

Use symbolic notation

Let \(p \) be “the car is running” and let \(q \) be “the key is in the ignition.”

a. Write the conditional statement \(p \rightarrow q \) in words.

b. Write the converse \(q \rightarrow p \) in words.

c. Write the inverse \(\sim p \rightarrow \sim q \) in words.

d. Write the contrapositive \(\sim q \rightarrow \sim p \) in words.

Solution

a. Conditional: If the car is running, then the key is in the ignition.

b. Converse: If the key is in the ignition, then the car is running.

c. Inverse: If the car is not running, then the key is not in the ignition.

d. Contrapositive: If the key is not in the ignition, then the car is not running.
TRUTH TABLES The **truth value** of a statement is either true (T) or false (F). You can determine the conditions under which a conditional statement is true by using a **truth table**. The truth table at the right shows the truth values for hypothesis \(p \) and conclusion \(q \). The conditional \(p \rightarrow q \) is only false when a true hypothesis produces a false conclusion.

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Example 2: Make a truth table

Use the truth table above to make truth tables for the converse, inverse, and contrapositive of a conditional statement \(p \rightarrow q \).

Solution

Converse

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(q \rightarrow p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Inverse

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\sim p)</th>
<th>(q)</th>
<th>(\sim q)</th>
<th>(\sim p \rightarrow \sim q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Contrapositive

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\sim q)</th>
<th>(\sim p)</th>
<th>(\sim q \rightarrow \sim p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Practice

1. **Writing** Describe how to use symbolic notation to represent the contrapositive of a conditional statement.

 Writing Statements Use \(p \) and \(q \) to write the symbolic statement in words.

 - \(p \): Polygon \(ABCDE \) is equiangular and equilateral.
 - \(q \): Polygon \(ABCDE \) is a regular polygon.

2. \(p \rightarrow q \)

3. \(\sim p \)

4. \(\sim q \rightarrow \sim p \)

5. \(p \leftrightarrow q \)

6. **Law of Syllogism** Use the statements \(p, q, \) and \(r \) below to write a series of conditionals that would satisfy the Law of Syllogism. How could you write your reasoning using symbolic notation?

 - \(p: x + 5 = 12 \)
 - \(q: x = 7 \)
 - \(r: 3x = 21 \)

7. **Writing** Is the truth value of a statement always true (T)? Explain.

8. **Truth Table** Use the statement “If an animal is a poodle, then it is a dog.”

 a. Identify the hypothesis \(p \) and the conclusion \(q \) in the conditional.

 b. Make a truth table for the converse. Explain what each row in the table means in terms of the original statement.
2.4 Use Postulates and Diagrams

You used postulates involving angle and segment measures. You will now use postulates involving points, lines, and planes. So you can draw the layout of a neighborhood, as in Ex. 39.

Key Vocabulary
- line perpendicular to a plane
- postulate, p. 8

In geometry, rules that are accepted without proof are called postulates or axioms. Rules that are proved are called theorems. Postulates and theorems are often written in conditional form. Unlike the converse of a definition, the converse of a postulate or theorem cannot be assumed to be true.

You learned four postulates in Chapter 1.

<table>
<thead>
<tr>
<th>Postulate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ruler Postulate</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Segment Addition Postulate</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Protractor Postulate</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Angle Addition Postulate</td>
<td>25</td>
</tr>
</tbody>
</table>

Here are seven new postulates involving points, lines, and planes.

POSTULATES

<table>
<thead>
<tr>
<th>Postulate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Through any two points there exists exactly one line.</td>
</tr>
<tr>
<td>6</td>
<td>A line contains at least two points.</td>
</tr>
<tr>
<td>7</td>
<td>If two lines intersect, then their intersection is exactly one point.</td>
</tr>
<tr>
<td>8</td>
<td>Through any three noncollinear points there exists exactly one plane.</td>
</tr>
<tr>
<td>9</td>
<td>A plane contains at least three noncollinear points.</td>
</tr>
<tr>
<td>10</td>
<td>If two points lie in a plane, then the line containing them lies in the plane.</td>
</tr>
<tr>
<td>11</td>
<td>If two planes intersect, then their intersection is a line.</td>
</tr>
</tbody>
</table>

ALGEBRA CONNECTION You have been using many of Postulates 5–11 in previous courses.

One way to graph a linear equation is to plot two points whose coordinates satisfy the equation and then connect them with a line. Postulate 5 guarantees that there is exactly one such line. A familiar way to find a common solution of two linear equations is to graph the lines and find the coordinates of their intersection. This process is guaranteed to work by Postulate 7.
EXAMPLE 1 Identify a postulate illustrated by a diagram

State the postulate illustrated by the diagram.

a. [Diagram showing two intersecting lines]

 Solution

 a. **Postulate 7** If two lines intersect, then their intersection is exactly one point.

b. [Diagram showing two intersecting planes]

 Solution

 b. **Postulate 11** If two planes intersect, then their intersection is a line.

EXAMPLE 2 Identify postulates from a diagram

Use the diagram to write examples of Postulates 9 and 10.

Postulate 9 Plane \(P \) contains at least three noncollinear points, \(A, B, \) and \(C \).

Postulate 10 Point \(A \) and point \(B \) lie in plane \(P \), so line \(n \) containing \(A \) and \(B \) also lies in plane \(P \).

GUIDED PRACTICE for Examples 1 and 2

1. Use the diagram in Example 2. Which postulate allows you to say that the intersection of plane \(P \) and plane \(Q \) is a line?
2. Use the diagram in Example 2 to write examples of Postulates 5, 6, and 7.

CONCEPT SUMMARY

Interpreting a Diagram

When you interpret a diagram, you can only assume information about size or measure if it is marked.

YOU CAN ASSUME

All points shown are coplanar.

\(\angle AHB \) and \(\angle BHD \) are a linear pair.

\(\angle AHF \) and \(\angle BHD \) are vertical angles.

\(A, H, J, \) and \(D \) are collinear.

\(\overrightarrow{AD} \) and \(\overrightarrow{BF} \) intersect at \(H \).

YOU CANNOT ASSUME

\(G, F, \) and \(E \) are collinear.

\(\overrightarrow{BF} \) and \(\overrightarrow{CE} \) intersect.

\(\overrightarrow{BF} \) and \(\overrightarrow{CE} \) do not intersect.

\(\angle BHA \equiv \angle CJA \)

\(\overrightarrow{AD} \perp \overrightarrow{BF} \) or \(m \angle AHB = 90^\circ \)
EXAMPLE 3 Use given information to sketch a diagram

Sketch a diagram showing \(\overline{TV} \) intersecting \(\overline{PQ} \) at point \(W \), so that \(\overline{TW} \equiv \overline{WV} \).

Solution

STEP 1 Draw \(\overline{TV} \) and label points \(T \) and \(V \).

STEP 2 Draw point \(W \) at the midpoint of \(\overline{TV} \). Mark the congruent segments.

STEP 3 Draw \(\overline{PQ} \) through \(W \).

PERPENDICULAR FIGURES A line is a **line perpendicular to a plane** if and only if the line intersects the plane in a point and is perpendicular to every line in the plane that intersects it at that point.

In a diagram, a line perpendicular to a plane must be marked with a right angle symbol.

EXAMPLE 4 Interpret a diagram in three dimensions

Which of the following statements *cannot* be assumed from the diagram?

- \(A, B, \) and \(F \) are collinear.
- \(E, B, \) and \(D \) are collinear.
- \(\overline{AB} \perp \) plane \(S \)
- \(\overline{CD} \perp \) plane \(T \)
- \(\overline{AF} \) intersects \(\overline{BC} \) at point \(B \).

Solution

No drawn line connects \(E, B, \) and \(D \), so you cannot assume they are collinear. With no right angle marked, you cannot assume \(\overline{CD} \perp \) plane \(T \).

Guided Practice for Examples 3 and 4

In Exercises 3 and 4, refer back to Example 3.

3. If the given information stated \(\overline{PW} \) and \(\overline{QW} \) are congruent, how would you indicate that in the diagram?

4. Name a pair of supplementary angles in the diagram. *Explain.*

5. In the diagram for Example 4, can you assume plane \(S \) intersects plane \(T \) at \(\overline{BC} \)?

6. *Explain* how you know that \(\overline{AB} \perp \overline{BC} \) in Example 4.
1. **Vocabulary** Copy and complete: A __?__ is a line that intersects the plane in a point and is perpendicular to every line in the plane that intersects it.

2. **Writing** Explain why you cannot assume $\angle BHA \cong \angle CJA$ in the Concept Summary on page 97.

Identifying Postulates
State the postulate illustrated by the diagram.

3. If $A \rightarrow B$, then __________

4. If $A \rightarrow C$, then __________

5. **Conditional Statements** Postulate 8 states that through any three noncollinear points there exists exactly one plane.
 a. Rewrite Postulate 8 in if-then form.
 b. Write the converse, inverse, and contrapositive of Postulate 8.
 c. Which statements in part (b) are true?

Using a Diagram
Use the diagram to write an example of each postulate.

6. Postulate 6

7. Postulate 7

8. Postulate 8

9. **Sketching** Sketch a diagram showing \overline{XY} intersecting \overline{WV} at point T, so $\overline{XY} \perp \overline{WV}$. In your diagram, does \overline{WT} have to be congruent to \overline{TV}? Explain your reasoning.

10. **TAKS Reasoning** Which of the following statements cannot be assumed from the diagram?
 a. Points A, B, C, and E are coplanar.
 b. Points F, B, and G are collinear.
 c. $\overrightarrow{HC} \perp \overrightarrow{GE}$
 d. \overrightarrow{EC} intersects plane M at point C.

Analyzing Statements
Decide whether the statement is true or false. If it is false, give a real-world counterexample.

11. Through any three points, there exists exactly one line.

12. A point can be in more than one plane.

13. Any two planes intersect.
USING A DIAGRAM Use the diagram to determine if the statement is true or false.

14. Planes \(W \) and \(X \) intersect at \(KL \).
15. Points \(Q, J, \) and \(M \) are collinear.
16. Points \(K, L, M, \) and \(R \) are coplanar.
17. \(MN \) and \(RP \) intersect.
18. \(RP \perp \) plane \(W \)
19. \(\overrightarrow{KL} \) lies in plane \(X \).
20. \(\angle PLK \) is a right angle.
21. \(\angle NKL \) and \(\angle JKM \) are vertical angles.
22. \(\angle NJM \) and \(\angle JKM \) are supplementary angles.
23. \(\angle JKM \) and \(\angle KLP \) are congruent angles.

24. ★ TAKS REASONING Choose the diagram showing \(LN, AB, \) and \(DC \) intersecting at point \(M \), \(AB \) bisecting \(LN \), and \(DC \perp LN \).

25. ★ TAKS REASONING Sketch a diagram of a real-world object illustrating three of the postulates about points, lines, and planes. List the postulates used.

26. ERROR ANALYSIS A student made the false statement shown. Change the statement in two different ways to make it true.

27. REASONING Use Postulates 5 and 9 to explain why every plane contains at least one line.

28. REASONING Point \(X \) lies in plane \(M \). Use Postulates 6 and 9 to explain why there are at least two lines in plane \(M \) that contain point \(X \).

29. CHALLENGE Sketch a line \(m \) and a point \(C \) not on line \(m \). Make a conjecture about how many planes can be drawn so that line \(m \) and point \(C \) lie in the plane. Use postulates to justify your conjecture.
REAL-WORLD SITUATIONS Which postulate is suggested by the photo?

30.
31.
32.

33. TAKS REASONING Give a real-world example of Postulate 6, which states that a line contains at least two points.

34. DRAW A DIAGRAM Sketch two lines that intersect, and another line that does not intersect either one.

USING A DIAGRAM Use the pyramid to write examples of the postulate indicated.

35. Postulate 5
36. Postulate 7
37. Postulate 9
38. Postulate 10

39. TAKS REASONING A friend e-mailed you the following statements about a neighborhood. Use the statements to complete parts (a)–(e).

<table>
<thead>
<tr>
<th>Subject</th>
<th>Neighborhood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Building B is due west of Building A.</td>
</tr>
<tr>
<td></td>
<td>Buildings A and B are on Street 1.</td>
</tr>
<tr>
<td></td>
<td>Building D is due north of Building A.</td>
</tr>
<tr>
<td></td>
<td>Buildings A and D are on Street 2.</td>
</tr>
<tr>
<td></td>
<td>Building C is southwest of Building A.</td>
</tr>
<tr>
<td></td>
<td>Buildings A and C are on Street 3.</td>
</tr>
<tr>
<td></td>
<td>Building E is due east of Building B.</td>
</tr>
<tr>
<td></td>
<td>(\angle CAE) formed by Streets 1 and 3 is obtuse.</td>
</tr>
</tbody>
</table>

a. Draw a diagram of the neighborhood.
b. Where do Streets 1 and 2 intersect?
c. Classify the angle formed by Streets 1 and 2.
e. What street is Building E on?
40. **MULTI-STEP PROBLEM** Copy the figure and label the following points, lines, and planes appropriately.
 a. Label the horizontal plane as X and the vertical plane as Y.
 b. Draw two points A and B on your diagram so they lie in plane Y, but not in plane X.
 c. Illustrate Postulate 5 on your diagram.
 d. If point C lies in both plane X and plane Y, where would it lie? Draw point C on your diagram.
 e. Illustrate Postulate 9 for plane X on your diagram.

41. **TAKS REASONING** Points E, F, and G all lie in plane P and in plane Q. What must be true about points E, F, and G if P and Q are different planes? What must be true about points E, F, and G to force P and Q to be the same plane? Make sketches to support your answers.

 DRAWING DIAGRAMS \overrightarrow{AC} and \overrightarrow{DB} intersect at point E. Draw one diagram that meets the additional condition(s) and another diagram that does not.

42. $\angle AED$ and $\angle AEB$ are right angles.

43. Point E is the midpoint of \overrightarrow{AC}.

44. \overrightarrow{EA} and \overrightarrow{EC} are opposite rays. \overrightarrow{EB} and \overrightarrow{ED} are not opposite rays.

45. **CHALLENGE** Suppose none of the four legs of a chair are the same length. What is the maximum number of planes determined by the lower ends of the legs? Suppose exactly three of the legs of a second chair have the same length. What is the maximum number of planes determined by the lower ends of the legs of the second chair? *Explain* your reasoning.

Mixed Review for TAKS

46. **TAKS PRACTICE** Which of the labeled points on the coordinate grid satisfies the condition $x < -2$ and $y \geq 3$? *TAKS Obj. 6*
 - A. Q
 - B. R
 - C. S
 - D. T

47. **TAKS PRACTICE** Which of the following statements is true about the parabola shown? *TAKS Obj. 5*
 - F. The vertex is $(4, 0)$.
 - G. The parabola has a minimum value.
 - H. The axis of symmetry is the y-axis.
 - J. The leading coefficient is positive.
Lessons 2.1–2.4

MULTIPLE CHOICE

1. **SUNRISE** The table shows the time of sunrise in Galveston, Texas. Which is a reasonable prediction for the time of sunrise on September 1, 2006? **TEKS G.3.D**

<table>
<thead>
<tr>
<th>Date in 2006</th>
<th>Time of Sunrise (Central Standard Time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar. 1</td>
<td>6:45 A.M.</td>
</tr>
<tr>
<td>Apr. 1</td>
<td>6:09 A.M.</td>
</tr>
<tr>
<td>May 1</td>
<td>5:37 A.M.</td>
</tr>
<tr>
<td>June 1</td>
<td>5:20 A.M.</td>
</tr>
<tr>
<td>July 1</td>
<td>5:23 A.M.</td>
</tr>
<tr>
<td>Aug. 1</td>
<td>5:40 A.M.</td>
</tr>
</tbody>
</table>

(A) 5:25 A.M. (B) 5:38 A.M. (C) 5:57 A.M. (D) 7:06 A.M.

2. **HURRICANES** Based on the table, which of the following is true? **TEKS G.3.E**

<table>
<thead>
<tr>
<th>Hurricane category</th>
<th>Wind speed, w (mi/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74 (\leq w \leq 95)</td>
</tr>
<tr>
<td>2</td>
<td>95 (< w \leq 110)</td>
</tr>
<tr>
<td>3</td>
<td>110 (< w \leq 130)</td>
</tr>
<tr>
<td>4</td>
<td>130 (< w \leq 155)</td>
</tr>
<tr>
<td>5</td>
<td>(w > 155)</td>
</tr>
</tbody>
</table>

(A) A hurricane is a category 4 hurricane if and only if its wind speed is greater than 130 miles per hour.

(B) A hurricane is a category 1 hurricane if and only if its wind speed is between 5 miles per hour and 74 miles per hour.

(C) A hurricane is a category 3 hurricane if and only if its wind speed is less than or equal to 130 miles per hour.

(D) A hurricane is a category 5 hurricane if and only if its wind speed is greater than 155 miles per hour.

3. **ATTENDANCE** The graph shows attendance in a mathematics teacher’s classes for four consecutive weeks. Which statement is the result of inductive reasoning? **TEKS G.3.D**

- Friday was the day of the week with the most total absences over a four-week period.
- Attendance was the highest on a Tuesday.
- On Wednesdays, the math teacher can expect about 73 students to attend her classes.
- The average number of students who came to math class over a four-week period was about 71.

4. **LIBRARY** A person needs a library card to check out books at the public library. Kate checked out a book at the public library. Which of the following must be true? **TEKS G.3.E**

(A) Kate has a library card.

(B) Kate may have a library card.

(C) Kate does not have a library card.

(D) Kate does not need a library card.

5. **FINDING PATTERNS** Write the next number in the pattern. **TEKS G.3.D**

1, 2, 5, 10, 17, 26, . . .
2.5 Justify a Number Trick

MATERIALS • paper • pencil

QUESTION How can you use algebra to justify a number trick?

Number tricks can allow you to guess the result of a series of calculations.

EXPLORE Play the number trick

STEP 1 Pick a number Follow the directions below.

a. Pick any number between 11 and 98 that does not end in a zero.
 23

b. Double the number.
 23 \(\times 2 \) \(= \) 46

c. Add 4 to your answer.
 46 \(+ \) 4 \(= \) 50

d. Multiply your answer by 5.
 50 \(\times 5 \) \(= \) 250

e. Add 12 to your answer.
 250 \(+ \) 12 \(= \) 262

f. Multiply your answer by 10.
 262 \(\times 10 \) \(= \) 2620

g. Subtract 320 from your answer.
 2620 \(- \) 320 \(= \) 2300

h. Cross out the zeros in your answer.

STEP 2 Repeat the trick Repeat the trick three times using three different numbers. What do you notice?

DRAW CONCLUSIONS Use your observations to complete these exercises

1. Let \(x \) represent the number you chose in the Explore. Write algebraic expressions for each step. Remember to use the Order of Operations.

2. Justify each expression you wrote in Exercise 1.

3. Another number trick is as follows:
 Pick any number.
 Multiply your number by 2.
 Add 18 to your answer.
 Divide your answer by 2.
 Subtract your original number from your answer.

 What is your answer? Does your answer depend on the number you chose? How can you change the trick so your answer is always 15? Explain.

4. REASONING Write your own number trick.
You used deductive reasoning to form logical arguments.

You will use algebraic properties in logical arguments too.

So you can apply a heart rate formula, as in Example 3.

Key Vocabulary
- equation, p. 875
- solve an equation, p. 875

When you *solve an equation*, you use properties of real numbers. Segment lengths and angle measures are real numbers, so you can also use these properties to write logical arguments about geometric figures.

KEY CONCEPT
Algebraic Properties of Equality

Let a, b, and c be real numbers.

- **Addition Property**

 If $a = b$, then $a + c = b + c$.

- **Subtraction Property**

 If $a = b$, then $a - c = b - c$.

- **Multiplication Property**

 If $a = b$, then $ac = bc$.

- **Division Property**

 If $a = b$ and $c
eq 0$, then $\frac{a}{c} = \frac{b}{c}$.

- **Substitution Property**

 If $a = b$, then a can be substituted for b in any equation or expression.

EXAMPLE 1
Write reasons for each step

Solve $2x + 5 = 20 - 3x$. Write a reason for each step.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Explanation</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2x + 5 = 20 - 3x$</td>
<td>Write original equation.</td>
<td>Given</td>
</tr>
<tr>
<td>$2x + 5 + 3x = 20 - 3x + 3x$</td>
<td>Add $3x$ to each side.</td>
<td>Addition Property of Equality</td>
</tr>
<tr>
<td>$5x + 5 = 20$</td>
<td>Combine like terms.</td>
<td>Simplify.</td>
</tr>
<tr>
<td>$5x = 15$</td>
<td>Subtract 5 from each side.</td>
<td>Subtraction Property of Equality</td>
</tr>
<tr>
<td>$x = 3$</td>
<td>Divide each side by 5.</td>
<td>Division Property of Equality</td>
</tr>
</tbody>
</table>

The value of x is 3.
KEY CONCEPT

Distributive Property

\[a(b + c) = ab + ac, \text{ where } a, b, \text{ and } c \text{ are real numbers.} \]

EXAMPLE 2 Use the Distributive Property

Solve \(-4(11x + 2) = 80\). Write a reason for each step.

Solution

<table>
<thead>
<tr>
<th>Equation</th>
<th>Explanation</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4(11x + 2) = 80)</td>
<td>Write original equation.</td>
<td>Given</td>
</tr>
<tr>
<td>(-44x - 8 = 80)</td>
<td>Multiply.</td>
<td>Distributive Property</td>
</tr>
<tr>
<td>(-44x = 88)</td>
<td>Add 8 to each side.</td>
<td>Addition Property of Equality</td>
</tr>
<tr>
<td>(x = -2)</td>
<td>Divide each side by (-44).</td>
<td>Division Property of Equality</td>
</tr>
</tbody>
</table>

EXAMPLE 3 Use properties in the real world

Heart Rate When you exercise, your target heart rate should be between 50% to 70% of your maximum heart rate. Your target heart rate \(r\) at 70% can be determined by the formula \(r = 0.70(220 - a)\) where \(a\) represents your age in years. Solve the formula for \(a\).

Solution

<table>
<thead>
<tr>
<th>Equation</th>
<th>Explanation</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r = 0.70(220 - a))</td>
<td>Write original equation.</td>
<td>Given</td>
</tr>
<tr>
<td>(r = 154 - 0.70a)</td>
<td>Multiply.</td>
<td>Distributive Property</td>
</tr>
<tr>
<td>(r - 154 = -0.70a)</td>
<td>Subtract 154 from each side.</td>
<td>Subtraction Property of Equality</td>
</tr>
<tr>
<td>(\frac{r - 154}{-0.70} = a)</td>
<td>Divide each side by (-0.70).</td>
<td>Division Property of Equality</td>
</tr>
</tbody>
</table>

Guided Practice

For Exercises 1, 2, and 3

In Exercises 1 and 2, solve the equation and write a reason for each step.

1. \(4x + 9 = -3x + 2\)
2. \(14x + 3(7 - x) = -1\)
3. Solve the formula \(A = \frac{1}{2}bh\) for \(b\).
PROPERTIES The following properties of equality are true for all real numbers. Segment lengths and angle measures are real numbers, so these properties of equality are true for segment lengths and angle measures.

<table>
<thead>
<tr>
<th>KEY CONCEPT</th>
<th>For Your Notebook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflexive Property of Equality</td>
<td></td>
</tr>
<tr>
<td>Real Numbers</td>
<td>For any real number (a), (a = a).</td>
</tr>
<tr>
<td>Segment Length</td>
<td>For any segment (\overline{AB}), (AB = AB).</td>
</tr>
<tr>
<td>Angle Measure</td>
<td>For any angle (\angle A), (m\angle A = m\angle A).</td>
</tr>
<tr>
<td>Symmetric Property of Equality</td>
<td></td>
</tr>
<tr>
<td>Real Numbers</td>
<td>For any real numbers (a) and (b), if (a = b), then (b = a).</td>
</tr>
<tr>
<td>Segment Length</td>
<td>For any segments (\overline{AB}) and (\overline{CD}), if (AB = CD), then (CD = AB).</td>
</tr>
<tr>
<td>Angle Measure</td>
<td>For any angles (\angle A) and (\angle B), if (m\angle A = m\angle B), then (m\angle B = m\angle A).</td>
</tr>
<tr>
<td>Transitive Property of Equality</td>
<td></td>
</tr>
<tr>
<td>Real Numbers</td>
<td>For any real numbers (a), (b), and (c), if (a = b) and (b = c), then (a = c).</td>
</tr>
<tr>
<td>Segment Length</td>
<td>For any segments (\overline{AB}), (\overline{CD}), and (\overline{EF}), if (AB = CD) and (CD = EF), then (AB = EF).</td>
</tr>
<tr>
<td>Angle Measure</td>
<td>For any angles (\angle A), (\angle B), and (\angle C), if (m\angle A = m\angle B) and (m\angle B = m\angle C), then (m\angle A = m\angle C).</td>
</tr>
</tbody>
</table>

EXAMPLE 4 Use properties of equality

LOGO You are designing a logo to sell daffodils. Use the information given. Determine whether \(m\angle EBA = m\angle DBC\).

Solution

<table>
<thead>
<tr>
<th>Equation</th>
<th>Explanation</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m\angle 1 = m\angle 3)</td>
<td>Marked in diagram.</td>
<td>Given</td>
</tr>
<tr>
<td>(m\angle EBA = m\angle 3 + m\angle 2)</td>
<td>Add measures of adjacent angles.</td>
<td>Angle Addition Postulate</td>
</tr>
<tr>
<td>(m\angle EBA = m\angle 1 + m\angle 2)</td>
<td>Substitute (m\angle 1) for (m\angle 3).</td>
<td>Substitution Property of Equality</td>
</tr>
<tr>
<td>(m\angle 1 + m\angle 2 = m\angle DBC)</td>
<td>Add measures of adjacent angles.</td>
<td>Angle Addition Postulate</td>
</tr>
<tr>
<td>(m\angle EBA = m\angle DBC)</td>
<td>Both measures are equal to the sum of (m\angle 1 + m\angle 2).</td>
<td>Transitive Property of Equality</td>
</tr>
</tbody>
</table>
Example 5 Use properties of equality

In the diagram, \(AB = CD \). Show that \(AC = BD \).

Solution

<table>
<thead>
<tr>
<th>Equation</th>
<th>Explanation</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB = CD)</td>
<td>Marked in diagram.</td>
<td>Given</td>
</tr>
<tr>
<td>(AC = AB + BC)</td>
<td>Add lengths of adjacent segments.</td>
<td>Segment Addition Postulate</td>
</tr>
<tr>
<td>(BD = BC + CD)</td>
<td>Add lengths of adjacent segments.</td>
<td>Segment Addition Postulate</td>
</tr>
<tr>
<td>(AB + BC = CD + BC)</td>
<td>Add BC to each side of (AB = CD).</td>
<td>Addition Property of Equality</td>
</tr>
<tr>
<td>(AC = BD)</td>
<td>Substitute (AC) for (AB + BC) and (BD) for (BC + CD).</td>
<td>Substitution Property of Equality</td>
</tr>
</tbody>
</table>

Guided Practice for Examples 4 and 5

Name the property of equality the statement illustrates.

4. If \(m\angle 6 = m\angle 7 \), then \(m\angle 7 = m\angle 6 \).
5. If \(JK = KL \) and \(KL = 12 \), then \(JK = 12 \).
6. \(m\angle W = m\angle W \)

2.5 Exercises

Skill Practice

1. **Vocabulary** The following statement is true because of what property? The measure of an angle is equal to itself.

2. **Writing** Explain how to check the answer to Example 3 on page 106.

Writing Reasons Copy the logical argument. Write a reason for each step.

3. \(3x - 12 = 7x + 8 \)
 \(-4x - 12 = 8 \) \(\text{?} \)
 \(-4x = 20 \) \(\text{?} \)
 \(x = -5 \) \(\text{?} \)

4. \(5(x - 1) = 4x + 13 \)
 \(5x - 5 = 4x + 13 \) \(\text{?} \)
 \(x - 5 = 13 \) \(\text{?} \)
 \(x = 18 \) \(\text{?} \)
5. **TAKS REASONING** Name the property of equality the statement illustrates: If \(XY = AB\) and \(AB = GH\), then \(XY = GH\).

 - A) Substitution
 - B) Reflexive
 - C) Symmetric
 - D) Transitive

WRITING REASONS Solve the equation. Write a reason for each step.

6. \(5x - 10 = -40\)
7. \(4x + 9 = 16 - 3x\)
8. \(5(3x - 20) = -10\)

EXAMPLE 3 on p. 106 for Exs. 15–20

EXAMPLES 4 and 5 on pp. 107–108 for Exs. 21–25

9. \(3(2x + 11) = 9\)
10. \(2(-x - 5) = 12\)
11. \(44 - 2(3x + 4) = -18x\)
12. \(4(5x - 9) = -2(x + 7)\)
13. \(2x - 15 - x = 21 + 10x\)
14. \(3(7x - 9) - 19x = -15\)

ALGEBRA Solve the equation for \(y\). Write a reason for each step.

15. \(5x + y = 18\)
16. \(-4x + 2y = 8\)
17. \(12 - 3y = 30x\)

18. \(3x + 9y = -7\)
19. \(2y + 0.5x = 16\)
20. \(\frac{1}{2}x - \frac{3}{4}y = -2\)

COMPLETING STATEMENTS In Exercises 21–25, use the property to copy and complete the statement.

21. Substitution Property of Equality: If \(AB = 20\), then \(AB + CD = \) ? .
22. Symmetric Property of Equality: If \(m \angle 1 = m \angle 2\), then \(?\).
23. Addition Property of Equality: If \(AB = CD\), then \(? + EF = \) ? + EF.
24. Distributive Property: If \(5(x + 8) = 2\), then \(?x + \) ? = 2.
25. Transitive Property of Equality: If \(m \angle 1 = m \angle 2\) and \(m \angle 2 = m \angle 3\), then \(?\).

26. **ERROR ANALYSIS** *Describe* and correct the error in solving the equation for \(x\).

\[
\begin{align*}
7x &= x + 24 & \text{Given} \\
8x &= 24 & \text{Addition Property of Equality} \\
x &= 3 & \text{Division Property of Equality}
\end{align*}
\]

27. **TAKS REASONING** Write examples from your everyday life that could help you remember the Reflexive, Symmetric, and Transitive Properties of Equality.

PERIMETER In Exercises 28 and 29, show that the perimeter of triangle \(ABC\) is equal to the perimeter of triangle \(ADC\).

28.

29.

30. **CHALLENGE** In the figure at the right, \(\overline{ZY} \equiv \overline{XW}\), \(ZX = 5x + 17\), \(YW = 10 - 2x\), and \(YX = 3\). Find \(ZY\) and \(XW\).
31. **PERIMETER** The formula for the perimeter \(P \) of a rectangle is \(P = 2l + 2w \) where \(l \) is the length and \(w \) is the width. Solve the formula for \(l \) and write a reason for each step. Then find the length of a rectangular lawn whose perimeter is 55 meters and whose width is 11 meters.

32. **AREA** The formula for the area \(A \) of a triangle is \(A = \frac{1}{2}bh \) where \(b \) is the base and \(h \) is the height. Solve the formula for \(h \) and write a reason for each step. Then find the height of a triangle whose area is 1768 square inches and whose base is 52 inches.

33. **PROPERTIES OF EQUALITY** Copy and complete the table to show \(m\angle 2 = m\angle 3 \).

<table>
<thead>
<tr>
<th>Equation</th>
<th>Explanation</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m\angle 1 = m\angle 4),</td>
<td>?</td>
<td>Given</td>
</tr>
<tr>
<td>(m\angle HGF = 90^\circ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m\angle HGF = m\angle GHF)</td>
<td>?</td>
<td>Substitution Property of Equality</td>
</tr>
<tr>
<td>(\frac{1}{2}b \times h)</td>
<td>Add measures of adjacent angles.</td>
<td>?</td>
</tr>
<tr>
<td>(\frac{1}{2} \times 3 \times 4)</td>
<td>Write expressions equal to the angle measures.</td>
<td>?</td>
</tr>
<tr>
<td>(\frac{1}{2} \times 1 \times 4)</td>
<td>Substitute (m\angle 1) for (m\angle 4).</td>
<td>?</td>
</tr>
<tr>
<td>(m\angle 2 = m\angle 3)</td>
<td>?</td>
<td>Subtraction Property of Equality</td>
</tr>
</tbody>
</table>

34. **MULTI-STEP PROBLEM** Points \(A, B, C, \) and \(D \) represent stops, in order, along a subway route. The distance between Stops \(A \) and \(C \) is the same as the distance between Stops \(B \) and \(D \).

a. Draw a diagram to represent the situation.

b. Use the Segment Addition Postulate to show that the distance between Stops \(A \) and \(B \) is the same as the distance between Stops \(C \) and \(D \).

c. Justify part (b) using the Properties of Equality.

35. **SHORT RESPONSE** A flashlight beam is reflected off a mirror lying flat on the ground. Use the information given below to find \(m\angle 2 \).

\[
\begin{align*}
\angle 1 + \angle 2 + \angle 3 &= 180^\circ \\
\angle 1 + \angle 2 &= 148^\circ \\
\angle 1 &= \angle 3
\end{align*}
\]
36. MULTIPLE REPRESENTATIONS The formula to convert a temperature in degrees Fahrenheit (°F) to degrees Celsius (°C) is \(C = \frac{5}{9}(F - 32) \).

a. Writing an Equation Solve the formula for \(F \). Write a reason for each step.

b. Making a Table Make a table that shows the conversion to Fahrenheit for each temperature: 0°C, 20°C, 32°C, and 41°C.

c. Drawing a Graph Use your table to graph the temperature in degrees Celsius (°C) as a function of the temperature in degrees Fahrenheit (°F). Is this a linear function?

CHALLENGE In Exercises 37 and 38, decide whether the relationship is reflexive, symmetric, or transitive.

37. Group: two employees in a grocery store
 Relationship: “worked the same hours as”
 Example: Yen worked the same hours as Jim.

38. Group: negative numbers on a number line
 Relationship: “is less than”
 Example: -4 is less than -1.

39. TAKS PRACTICE A group of friends has a total of $26 to spend on fruit and cheese for a picnic. Cheese costs $4.50 per block and apples are $0.50 each. Which inequality best describes the number of blocks of cheese, \(c \), and the number of apples, \(a \), that the group can purchase? TAKS Obj. 4

 \(A \) \(4.5c + 0.5a \leq 26 \)

 \(B \) \(0.5c + 4.5a \geq 26 \)

 \(C \) \(0.5c + 4.5a \leq 26 \)

 \(D \) \(4.5c + 0.5a \geq 26 \)

QUIZ for Lessons 2.4–2.5

Use the diagram to determine if the statement is true or false. (p. 96)

1. Points \(B \), \(C \), and \(D \) are coplanar.
2. Point \(A \) is on line \(l \).
3. Plane \(P \) and plane \(Q \) are perpendicular.

Solve the equation. Write a reason for each step. (p. 105)

4. \(x + 20 = 35 \)
5. \(5x - 14 = 16 + 3x \)

Use the property to copy and complete the statement. (p. 105)

6. Subtraction Property of Equality: If \(AB = CD \), then \(? - EF = ? - EF \).
7. Transitive Property of Equality: If \(a = b \) and \(b = c \), then \(? = ? \).
A proof is a logical argument that shows a statement is true. There are several formats for proofs. A two-column proof has numbered statements and corresponding reasons that show an argument in a logical order.

In a two-column proof, each statement in the left-hand column is either given information or the result of applying a known property or fact to statements already made. Each reason in the right-hand column is the explanation for the corresponding statement.

Example 1

Write a two-column proof

Write a two-column proof for the situation in Example 4 on page 107.

Given: \(m \angle 1 = m \angle 3 \)

Prove: \(m \angle EBA = m \angle DBC \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (m \angle 1 = m \angle 3)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (m \angle EBA = m \angle 3 + m \angle 2)</td>
<td>2. Angle Addition Postulate</td>
</tr>
<tr>
<td>3. (m \angle EBA = m \angle 1 + m \angle 2)</td>
<td>3. Substitution Property of Equality</td>
</tr>
<tr>
<td>4. (m \angle 1 + m \angle 2 = m \angle DBC)</td>
<td>4. Angle Addition Postulate</td>
</tr>
<tr>
<td>5. (m \angle EBA = m \angle DBC)</td>
<td>5. Transitive Property of Equality</td>
</tr>
</tbody>
</table>

Guided Practice for Example 1

1. Four steps of a proof are shown. Give the reasons for the last two steps.

 Given: \(AC = AB + AB \)

 Prove: \(AB = BC \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (AC = AB + AB)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (AB + BC = AC)</td>
<td>2. Segment Addition Postulate</td>
</tr>
<tr>
<td>3. (AB + AB = AB + BC)</td>
<td>3. ?</td>
</tr>
<tr>
<td>4. (AB = BC)</td>
<td>4. ?</td>
</tr>
</tbody>
</table>
THEOREMS The reasons used in a proof can include definitions, properties, postulates, and theorems. A theorem is a statement that can be proven. Once you have proven a theorem, you can use the theorem as a reason in other proofs.

THEOREMS

THEOREM 2.1 Congruence of Segments

Segment congruence is reflexive, symmetric, and transitive.

- **Reflexive** For any segment AB, $\overline{AB} \cong \overline{AB}$.
- **Symmetric** If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$.
- **Transitive** If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$.

Proofs: p. 137; Ex. 5, p. 121; Ex. 26, p. 118

THEOREM 2.2 Congruence of Angles

Angle congruence is reflexive, symmetric, and transitive.

- **Reflexive** For any angle A, $\angle A \cong \angle A$.
- **Symmetric** If $\angle A \cong \angle B$, then $\angle B \cong \angle A$.
- **Transitive** If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.

Proofs: Ex. 25, p. 118; Concept Summary, p. 114; Ex. 21, p. 137

EXAMPLE 2 Name the property shown

Name the property illustrated by the statement.

a. If $\angle R \cong \angle T$ and $\angle T \cong \angle P$, then $\angle R \cong \angle P$.
b. If $NK \cong BD$, then $BD \cong NK$.

Solution

a. Transitive Property of Angle Congruence

b. Symmetric Property of Segment Congruence

GUIDED PRACTICE for Example 2

Name the property illustrated by the statement.

2. $\overline{CD} \cong \overline{CD}$
3. If $\angle Q \equiv \angle V$, then $\angle V \equiv \angle Q$.

In this lesson, most of the proofs involve showing that congruence and equality are equivalent. You may find that what you are asked to prove seems to be obviously true. It is important to practice writing these proofs so that you will be prepared to write more complicated proofs in later chapters.
CONCEPT SUMMARY

For Your Notebook

Writing a Two-Column Proof

In a proof, you make one statement at a time, until you reach the conclusion. Because you make statements based on facts, you are using deductive reasoning. Usually the first statement-and-reason pair you write is given information.

Proof of the Symmetric Property of Angle Congruence

<table>
<thead>
<tr>
<th>GIVEN</th>
<th>(\angle 1 \equiv \angle 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROVE</td>
<td>(\angle 2 \equiv \angle 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle 1 \equiv \angle 2)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (m \angle 1 = m \angle 2)</td>
<td>2. Definition of congruent angles</td>
</tr>
<tr>
<td>3. (m \angle 2 = m \angle 1)</td>
<td>3. Symmetric Property of Equality</td>
</tr>
<tr>
<td>4. (\angle 2 \equiv \angle 1)</td>
<td>4. Definition of congruent angles</td>
</tr>
</tbody>
</table>

Definitions, postulates, or proven theorems that allow you to state the corresponding statement:

Statements based on facts that you know or on conclusions from deductive reasoning.

The number of statements will vary.

Remember to give a reason for the last statement.
SHOPPING MALL
Walking down a hallway at the mall, you notice the music store is halfway between the food court and the shoe store. The shoe store is halfway between the music store and the bookstore. Prove that the distance between the entrances of the food court and music store is the same as the distance between the entrances of the shoe store and bookstore.

Solution

STEP 1 Draw and label a diagram.

<table>
<thead>
<tr>
<th>food court</th>
<th>music store</th>
<th>shoe store</th>
<th>bookstore</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(B)</td>
<td>(C)</td>
<td>(D)</td>
</tr>
</tbody>
</table>

STEP 2 Draw separate diagrams to show mathematical relationships.

STEP 3 State what is given and what is to be proved for the situation. Then write a proof.

GIVEN
\(B\) is the midpoint of \(AC\).
\(C\) is the midpoint of \(BD\).

PROVE \(AB = CD\)

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (B) is the midpoint of (AC). (C) is the midpoint of (BD).</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (AB \cong BC)</td>
<td>2. Definition of midpoint</td>
</tr>
<tr>
<td>3. (BC \cong CD)</td>
<td>3. Definition of midpoint</td>
</tr>
<tr>
<td>4. (AB \cong CD)</td>
<td>4. Transitive Property of Congruence</td>
</tr>
<tr>
<td>5. (AB = CD)</td>
<td>5. Definition of congruent segments</td>
</tr>
</tbody>
</table>

ANOTHER WAY

For an alternative method for solving the problem in Example 4, turn to page 120 for the Problem Solving Workshop.

5. In Example 4, does it matter what the actual distances are in order to prove the relationship between \(AB\) and \(CD\)? Explain.

6. In Example 4, there is a clothing store halfway between the music store and the shoe store. What other two store entrances are the same distance from the entrance of the clothing store?
1. **VOCABULARY** What is a *theorem*? How is it different from a *postulate*?

2. **WRITING** You can use theorems as reasons in a two-column proof. What other types of statements can you use as reasons in a two-column proof? Give examples.

3. **DEVELOPING PROOF** Copy and complete the proof.

 GIVEN
 \[AB = 5, \quad BC = 6 \]

 PROVE
 \[AC = 11 \]

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. [AB = 5, \quad BC = 6]</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. [AC = AB + BC]</td>
<td>2. Segment Addition Postulate</td>
</tr>
<tr>
<td>3. [AC = 5 + 6]</td>
<td>3. ?</td>
</tr>
</tbody>
</table>

4. **★ TAKS REASONING** Which property listed is the reason for the last step in the proof?

 GIVEN
 \[m\angle 1 = 59^\circ, \quad m\angle 2 = 59^\circ \]

 PROVE
 \[m\angle 1 = m\angle 2 \]

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. [m\angle 1 = 59^\circ, \quad m\angle 2 = 59^\circ]</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. [59^\circ = m\angle 2]</td>
<td>2. Symmetric Property of Equality</td>
</tr>
<tr>
<td>3. [m\angle 1 = m\angle 2]</td>
<td>3. ?</td>
</tr>
</tbody>
</table>

 - **A** Transitive Property of Equality
 - **B** Reflexive Property of Equality
 - **C** Symmetric Property of Equality
 - **D** Distributive Property

USING PROPERTIES Use the property to copy and complete the statement.

5. Reflexive Property of Congruence: \[\overline{SE} \equiv \overline{SE} \]

6. Symmetric Property of Congruence: If \[\angle ? \equiv \angle ? \], then \[\angle RST \equiv \angle JKL \].

7. Transitive Property of Congruence: If \[\angle F \equiv \angle J \] and \[\angle ? \equiv \angle ? \], then \[\angle F \equiv \angle L \].

NAMING PROPERTIES Name the property illustrated by the statement.

8. If \[DG \equiv CT \], then \[CT \equiv DG \].

9. \[\angle VWX \equiv \angle VWX \]

10. If \[JK \equiv MN \] and \[MN \equiv XY \], then \[JK \equiv XY \].

11. \[YZ = ZY \]

12. **★ TAKS REASONING** Name the property illustrated by the statement
 “If \[CD \equiv MN \], then \[MN \equiv CD \].”

 - **A** Reflexive Property of Equality
 - **B** Symmetric Property of Equality
 - **C** Symmetric Property of Congruence
 - **D** Transitive Property of Congruence
13. **ERROR ANALYSIS** In the diagram below, $\overline{MN} \cong \overline{LQ}$ and $\overline{LQ} \cong \overline{PN}$. Describe and correct the error in the reasoning.

```
Because $\overline{MN} \cong \overline{LQ}$ and $\overline{LQ} \cong \overline{PN}$, 
then $\overline{MN} \cong \overline{PN}$ by the Reflexive 
Property of Segment Congruence.
```

14. **CRYSTALS** The shape of a crystal can be represented by intersecting lines and planes. Suppose a crystal is cubic, which means it can be represented by six planes that intersect at right angles.

15. **BEACH VACATION** You are on vacation at the beach. Along the boardwalk, the bike rentals are halfway between your cottage and the kite shop. The snack shop is halfway between your cottage and the bike rentals. The arcade is halfway between the bike rentals and the kite shop.

16. **DEVELOPING PROOF** Copy and complete the proof.

<table>
<thead>
<tr>
<th>GIVEN</th>
<th>PROVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\overline{RT} = 5, \overline{RS} = 5, \overline{RT} \cong \overline{TS}$</td>
<td>$\overline{RS} \cong \overline{TS}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\overline{RT} = 5, \overline{RS} = 5, \overline{RT} \cong \overline{TS}$</td>
<td>1. ?</td>
</tr>
<tr>
<td>2. $\overline{RS} = \overline{RT}$</td>
<td>2. Transitive Property of Equality</td>
</tr>
<tr>
<td>3. $\overline{RT} = \overline{TS}$</td>
<td>3. Definition of congruent segments</td>
</tr>
<tr>
<td>4. $\overline{RS} = \overline{TS}$</td>
<td>4. Transitive Property of Equality</td>
</tr>
<tr>
<td>5. $\overline{RS} \cong \overline{TS}$</td>
<td>5. ?</td>
</tr>
</tbody>
</table>

17. **SOLVE FOR X** Solve for x using the given information. Explain your steps.

18. **GIVEN** $\angle ABC = 90^\circ$

19. **TAKS REASONING** Explain why writing a proof is an example of deductive reasoning, not inductive reasoning.

20. **CHALLENGE** Point P is the midpoint of \overline{MN} and point Q is the midpoint of \overline{MP}. Suppose \overline{AB} is congruent to \overline{MP}, and \overline{PN} has length x. Write the length of the segments in terms of x. Explain.

 a. \overline{AB}
 b. \overline{MN}
 c. \overline{MQ}
 d. \overline{NQ}
21. **BRIDGE** In the bridge in the illustration, it is known that $\angle 2 \equiv \angle 3$ and \overline{TV} bisects $\angle UTW$. Copy and complete the proof to show that $\angle 1 \equiv \angle 3$.

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. \overline{TV} bisects $\angle UTW$.</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $\angle 1 \equiv \angle 2$</td>
<td>2. ?</td>
</tr>
<tr>
<td>3. $\angle 2 \equiv \angle 3$</td>
<td>3. Given</td>
</tr>
<tr>
<td>4. $\angle 1 \equiv \angle 3$</td>
<td>4. ?</td>
</tr>
</tbody>
</table>

22. **DEVELOPING PROOF** Write a complete proof by matching each statement with its corresponding reason.

GIVEN \overrightarrow{QS} is an angle bisector of $\angle PQR$.

PROVE $m\angle PQS = \frac{1}{2} m\angle PQR$

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. \overrightarrow{QS} is an angle bisector of $\angle PQR$.</td>
<td>A. Definition of angle bisector</td>
</tr>
<tr>
<td>2. $\angle PQS \equiv \angle SQR$</td>
<td>B. Distributive Property</td>
</tr>
<tr>
<td>3. $m\angle PQS = m\angle SQR$</td>
<td>C. Angle Addition Postulate</td>
</tr>
<tr>
<td>4. $m\angle PQS + m\angle SQR = m\angle PQR$</td>
<td>D. Given</td>
</tr>
<tr>
<td>5. $m\angle PQS + m\angle PQS = m\angle PQR$</td>
<td>E. Division Property of Equality</td>
</tr>
<tr>
<td>6. $2 \cdot m\angle PQS = m\angle PQR$</td>
<td>F. Definition of congruent angles</td>
</tr>
<tr>
<td>7. $m\angle PQS = \frac{1}{2} m\angle PQR$</td>
<td>G. Substitution Property of Equality</td>
</tr>
</tbody>
</table>

PROOF Use the given information and the diagram to prove the statement.

23. **GIVEN** $2AB = AC$

PROVE $AB = BC$

24. **GIVEN** $m\angle 1 + m\angle 2 = 180^\circ$
 \[m\angle 1 = 62^\circ \]

PROVE $m\angle 2 = 118^\circ$

25. Reflexive Property of Angle Congruence

GIVEN A is an angle.

PROVE $\angle A \equiv \angle A$

26. Transitive Property of Segment Congruence

GIVEN $WX \equiv XY$ and $XY \equiv YZ$

PROVE $WX \equiv YZ$
27. **TAKS REASONING** In the sculpture shown, \(\angle 1 \equiv \angle 2 \) and \(\angle 2 \equiv \angle 3 \). Classify the triangle and justify your reasoning.

28. **TAKS REASONING** You use a computer drawing program to create a line segment. You copy the segment and paste it. You copy the pasted segment and then paste it, and so on. How do you know all the line segments are congruent?

29. **MULTI-STEP PROBLEM** The distance from the restaurant to the shoe store is the same as the distance from the cafe to the florist. The distance from the shoe store to the movie theater is the same as the distance from the movie theater to the cafe, and from the florist to the dry cleaners.

Use the steps below to prove that the distance from the restaurant to the movie theater is the same as the distance from the cafe to the dry cleaners.

a. Draw and label a diagram to show the mathematical relationships.

b. State what is given and what is to be proved for the situation.

c. Write a two-column proof.

30. **CHALLENGE** The distance from Springfield to Lakewood City is equal to the distance from Springfield to Bettsville. Janisburg is 50 miles farther from Springfield than Bettsville is. Moon Valley is 50 miles farther from Springfield than Lakewood City is.

a. Assume all five cities lie in a straight line. Draw a diagram that represents this situation.

b. Suppose you do not know that all five cities lie in a straight line. Draw a diagram that is different from the one in part (a) to represent the situation.

c. Explain the differences in the two diagrams.

31. **TAKS PRACTICE** Based on the pattern in the list of numbers below, what number comes next? **TAKS Obj. 10**

\[
1, -3, 5, -7, 9, -11
\]

A. -15 B. -13 C. 13 D. 15
Using ALTERNATIVE METHODS

Another Way to Solve Example 4, page 115

MULTIPLE REPRESENTATIONS The first step in writing any proof is to make a plan. A diagram or *visual organizer* can help you plan your proof. The steps of a proof must be in a logical order, but there may be more than one correct order.

SHOPPING MALL Walking down a hallway at the mall, you notice the music store is halfway between the food court and the shoe store. The shoe store is halfway between the music store and the bookstore. Prove that the distance between the entrances of the food court and music store is the same as the distance between the entrances of the shoe store and bookstore.

Using a Visual Organizer

STEP 1 Use a visual organizer to map out your proof.

The music store is halfway between the food court and the shoe store. The shoe store is halfway between the music store and the bookstore.

<table>
<thead>
<tr>
<th>Given information</th>
<th>Deductions from given information</th>
<th>Statement to prove</th>
</tr>
</thead>
<tbody>
<tr>
<td>M is halfway between F and S.</td>
<td>M is the midpoint of FS. So, $FM = MS$.</td>
<td>$FM = SB$</td>
</tr>
<tr>
<td>S is halfway between M and B.</td>
<td>S is the midpoint of MB. So, $MS = SB$.</td>
<td></td>
</tr>
</tbody>
</table>

STEP 2 Write a proof using the lengths of the segments.

GIVEN
- M is halfway between F and S.
- S is halfway between M and B.

PROVE
- $FM = SB$

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. M is halfway between F and S.</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. S is halfway between M and B.</td>
<td>2. Given</td>
</tr>
<tr>
<td>3. M is the midpoint of FS.</td>
<td>3. Definition of midpoint</td>
</tr>
<tr>
<td>4. S is the midpoint of MB.</td>
<td>4. Definition of midpoint</td>
</tr>
<tr>
<td>5. $FM = MS$ and $MS = SB$</td>
<td>5. Definition of midpoint</td>
</tr>
<tr>
<td>6. $MS = MS$</td>
<td>6. Reflexive Property of Equality</td>
</tr>
<tr>
<td>7. $FM = SB$</td>
<td>7. Substitution Property of Equality</td>
</tr>
</tbody>
</table>
1. **COMPARE PROOFS** Compare the proof on the previous page and the proof in Example 4 on page 115.
 a. How are the proofs the same? How are they different?
 b. Which proof is easier for you to understand? Explain.

2. **REASONING** Below is a proof of the Transitive Property of Angle Congruence. What is another reason you could give for Statement 3? Explain.

 GIVEN \(\angle A \cong \angle B \text{ and } \angle B \cong \angle C \)
 PROVE \(\angle A \cong \angle C \)

STATEMENTS	**REASONS**
 1. \(\angle A \cong \angle B, \angle B \cong \angle C \) | 1. Given
 2. \(m\angle A = m\angle B, m\angle B = m\angle C \) | 2. Definition of congruent angles
 3. \(m\angle A = m\angle C \) | 3. Transitive Property of Equality
 4. \(\angle A \cong \angle C \) | 4. Definition of congruent angles

3. **SHOPPING MALL** You are at the same mall as on page 120 and you notice that the bookstore is halfway between the shoe store and the toy store. Draw a diagram or make a visual organizer, then write a proof to show that the distance from the entrances of the food court and music store is the same as the distance from the entrances of the book store and toy store.

4. **WINDOW DESIGN** The entrance to the mall has a decorative window above the main doors as shown. The colored dividers form congruent angles. Draw a diagram or make a visual organizer, then write a proof to show that the angle measure between the red dividers is half the measure of the angle between the blue dividers.

5. **COMPARE PROOFS** Below is a proof of the Symmetric Property of Segment Congruence.

 GIVEN \(\overline{DE} \cong \overline{FG} \)
 PROVE \(\overline{FG} \cong \overline{DE} \)

STATEMENTS	**REASONS**
 1. \(\overline{DE} \cong \overline{FG} \) | 1. Given
 2. \(\overline{DE} = \overline{FG} \) | 2. Definition of congruent segments
 3. \(\overline{FG} = \overline{DE} \) | 3. Symmetric Property of Equality
 4. \(\overline{FG} \cong \overline{DE} \) | 4. Definition of congruent segments

 a. Compare this proof to the proof of the Symmetric Property of Angle Congruence in the Concept Summary on page 114. What makes the proofs different? Explain.
 b. Explain why Statement 2 above cannot be \(\overline{FG} \cong \overline{DE} \).
2.7 Angles and Intersecting Lines

MATERIALS • graphing calculator or computer

QUESTION What is the relationship between the measures of the angles formed by intersecting lines?

You can use geometry drawing software to investigate the measures of angles formed when lines intersect.

EXPLORE 1 Measure linear pairs formed by intersecting lines

STEP 1 Draw two intersecting lines

Draw and label \(\overline{AB} \). Draw and label \(\overline{CD} \) so that it intersects \(\overline{AB} \). Draw and label the point of intersection \(E \).

STEP 2 Measure angles

Measure \(\angle AEC \), \(\angle AED \), and \(\angle DEB \). Move point \(C \) to change the angles.

STEP 3 Save

Save as “EXPLORE1” by choosing Save from the F1 menu and typing the name.

DRAW CONCLUSIONS Use your observations to complete these exercises

1. Describe the relationship between \(\angle AEC \) and \(\angle AED \).
2. Describe the relationship between \(\angle AED \) and \(\angle DEB \).
3. What do you notice about \(\angle AEC \) and \(\angle DEB \)?
4. In Explore 1, what happens when you move \(C \) to a different position? Do the angle relationships stay the same? Make a conjecture about two angles supplementary to the same angle.
5. Do you think your conjecture will be true for supplementary angles that are not adjacent? Explain.
Explore 2 Measure complementary angles

Step 1 Draw two perpendicular lines Draw and label \overrightarrow{AB}. Draw point E on \overrightarrow{AB}. Draw and label $\overrightarrow{EC} \perp \overrightarrow{AB}$. Draw and label point D on \overrightarrow{EC} so that E is between C and D as shown in Step 2.

Step 2

Draw another line Draw and label \overrightarrow{EG} so that G is in the interior of $\angle CEB$. Draw point F on \overrightarrow{EG} as shown. Save as “EXPLORE2”.

Step 3

Measure angles Measure $\angle AEF$, $\angle FED$, $\angle CEG$, and $\angle GEB$. Move point G to change the angles.

Explore 3 Measure vertical angles formed by intersecting lines

Step 1 Draw two intersecting lines Draw and label \overrightarrow{AB}. Draw and label \overrightarrow{CD} so that it intersects \overrightarrow{AB}. Draw and label the point of intersection E.

Step 2 Measure angles Measure $\angle AEC$, $\angle AED$, $\angle BEC$, and $\angle DEB$. Move point C to change the angles. Save as “EXPLORE3”.

Draw Conclusions Use your observations to complete these exercises

6. In Explore 2, does the angle relationship stay the same as you move G?

7. In Explore 2, make a conjecture about the relationship between $\angle CEG$ and $\angle GEB$. Write your conjecture in if-then form.

8. In Explore 3, the intersecting lines form two pairs of vertical angles. Make a conjecture about the relationship between any two vertical angles. Write your conjecture in if-then form.

9. Name the pairs of vertical angles in Explore 2. Use this drawing to test your conjecture from Exercise 8.
Sometimes, a new theorem describes a relationship that is useful in writing proofs. For example, using the Right Angles Congruence Theorem will reduce the number of steps you need to include in a proof involving right angles.

THEOREM 2.3 Right Angles Congruence Theorem

All right angles are congruent.

Proof: below

EXAMPLE 1 Use right angle congruence

Write a proof.

GIVEN \(\overline{AB} \perp \overline{BC} \), \(\overline{DC} \perp \overline{BC} \)

PROVE \(\angle B \cong \angle C \)

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\overline{AB} \perp \overline{BC}), (\overline{DC} \perp \overline{BC})</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle B) and (\angle C) are right angles.</td>
<td>2. Definition of perpendicular lines</td>
</tr>
<tr>
<td>3. (\angle B \cong \angle C)</td>
<td>3. Right Angles Congruence Theorem</td>
</tr>
</tbody>
</table>
EXAMPLE 2 Prove a case of Congruent Supplements Theorem

Prove that two angles supplementary to the same angle are congruent.

GIVEN \(\angle 1 \) and \(\angle 2 \) are supplements.
\(\angle 3 \) and \(\angle 2 \) are supplements.

PROVE \(\angle 1 \equiv \angle 3 \)

STATEMENTS

1. \(\angle 1 \) and \(\angle 2 \) are supplements.
 \(\angle 3 \) and \(\angle 2 \) are supplements.
2. \(m\angle 1 + m\angle 2 = 180^\circ \)
 \(m\angle 3 + m\angle 2 = 180^\circ \)
3. \(m\angle 1 + m\angle 2 = m\angle 3 + m\angle 2 \)
4. \(m\angle 1 = m\angle 3 \)
5. \(\angle 1 \equiv \angle 3 \)

REASONS

1. Given
2. Definition of supplementary angles
3. Transitive Property of Equality
4. Subtraction Property of Equality
5. Definition of congruent angles

To prove Theorem 2.4, you must prove two cases: one with angles supplementary to the same angle and one with angles supplementary to congruent angles. The proof of Theorem 2.5 also requires two cases.
INTERSECTING LINES When two lines intersect, pairs of vertical angles and linear pairs are formed. The relationship that you used in Lesson 1.5 for linear pairs is formally stated below as the *Linear Pair Postulate*. This postulate is used in the proof of the *Vertical Angles Congruence Theorem*.

POSTULATE

For Your Notebook

Postulate 12 *Linear Pair Postulate*

If two angles form a linear pair, then they are supplementary.

∠1 and ∠2 form a linear pair, so ∠1 and ∠2 are supplementary and \(m\angle 1 + m\angle 2 = 180^\circ \).

THEOREM

For Your Notebook

Theorem 2.6 *Vertical Angles Congruence Theorem*

Vertical angles are congruent.

Proof: Example 3, below

\(\angle 1 = \angle 3, \angle 2 = \angle 4 \)

Example 3 *Prove the Vertical Angles Congruence Theorem*

Prove vertical angles are congruent.

Given \(\angle 5 \) and \(\angle 7 \) are vertical angles.

Prove \(\angle 5 \cong \angle 7 \)

Proof:

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle 5) and (\angle 7) are vertical angles.</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle 5) and (\angle 6) are a linear pair. (\angle 6) and (\angle 7) are a linear pair.</td>
<td>2. Definition of linear pair, as shown in the diagram</td>
</tr>
<tr>
<td>3. (\angle 5) and (\angle 6) are supplementary. (\angle 6) and (\angle 7) are supplementary.</td>
<td>3. Linear Pair Postulate</td>
</tr>
<tr>
<td>4. (\angle 5 \cong \angle 7)</td>
<td>4. Congruent Supplements Theorem</td>
</tr>
</tbody>
</table>

Guided Practice for Example 3

In Exercises 3–5, use the diagram.

3. If \(m\angle 1 = 112^\circ \), find \(m\angle 2, m\angle 3, \) and \(m\angle 4 \).
4. If \(m\angle 2 = 67^\circ \), find \(m\angle 1, m\angle 3, \) and \(m\angle 4 \).
5. If \(m\angle 4 = 71^\circ \), find \(m\angle 1, m\angle 2, \) and \(m\angle 3 \).
6. Which previously proven theorem is used in Example 3 as a reason?
2.7 Prove Angle Pair Relationships

EXAMPLE 4 TAKS PRACTICE: Multiple Choice

Which equation can be used to find \(x \)?

- A. \(116 + (5x - 1) = 90 \)
- B. \(116 + (5x - 1) = 180 \)
- C. \(116 = 5x - 1 \)
- D. \(5x - 1 = 296 \)

Solution

Because \(\angle TPQ \) and \(\angle QPR \) form a linear pair, the sum of their measures is 180°.

The correct answer is B.

GUIDED PRACTICE for Example 4

Use the diagram in Example 4.

7. Solve for \(x \).

8. Find \(m\angle TPS \).

2.7 EXERCISES

SKILL PRACTICE

1. **VOCABULARY** Copy and complete: If two lines intersect at a point, then the ___ angles formed by the intersecting lines are congruent.

2. **WRITING** Describe the relationship between the angle measures of complementary angles, supplementary angles, vertical angles, and linear pairs.

IDENTIFY ANGLES Identify the pair(s) of congruent angles in the figures below. Explain how you know they are congruent.

3. \(\angle ABC \) is supplementary to \(\angle CBD \).
 \(\angle CBD \) is supplementary to \(\angle DEF \).

4. \(\angle MNP \) is congruent to \(\angle QRS \).

5. \(\angle LMN \) is congruent to \(\angle PQR \).

6. \(\angle GHL \) is congruent to \(\angle JMK \).
7. **TAKS REASONING** The x-axis and y-axis in a coordinate plane are perpendicular to each other. The axes form four angles. Are the four angles congruent right angles? Explain.

FINDING ANGLE MEASURES In Exercises 8–11, use the diagram at the right.

8. If \(\angle 1 = 145^\circ \), find \(\angle 2 \), \(\angle 3 \), and \(\angle 4 \).

9. If \(\angle 3 = 168^\circ \), find \(\angle 1 \), \(\angle 2 \), and \(\angle 4 \).

10. If \(\angle 4 = 37^\circ \), find \(\angle 1 \), \(\angle 2 \), and \(\angle 3 \).

11. If \(\angle 2 = 62^\circ \), find \(\angle 1 \), \(\angle 3 \), and \(\angle 4 \).

ALGEBRA Find the values of \(x \) and \(y \).

12. \(7y^2 + 34 = 5y + 8 \)
13. \(4x^\circ + 7y^\circ = 6x^\circ + 25^\circ \)
14. \((10x - 4)^\circ = (18y - 18)^\circ \)

15. ERROR ANALYSIS Describe the error in stating that \(\angle 1 \equiv \angle 4 \) and \(\angle 2 \equiv \angle 3 \).

16. **TAKS REASONING** In a figure, \(\angle A \) and \(\angle D \) are complementary angles and \(m\angle A = 4x^\circ \). Which expression can be used to find \(m\angle D \)?

A) \((4x + 90)^\circ \)
B) \((180 - 4x)^\circ \)
C) \((180 + 4x)^\circ \)
D) \((90 - 4x)^\circ \)

FINDING ANGLE MEASURES In Exercises 17–21, copy and complete the statement given that \(m\angle FHE = m\angle BHG = m\angle AHF = 90^\circ \).

17. If \(m\angle 3 = 30^\circ \), then \(m\angle 6 = \) ?.
18. If \(m\angle BHF = 115^\circ \), then \(m\angle 3 = \) ?.
19. If \(m\angle 6 = 27^\circ \), then \(m\angle 1 = \) ?.
20. If \(m\angle DHF = 133^\circ \), then \(m\angle CHG = \) ?.
21. If \(m\angle 3 = 32^\circ \), then \(m\angle 2 = \) ?.

ANALYZING STATEMENTS Two lines that are not perpendicular intersect such that \(\angle 1 \) and \(\angle 2 \) are a linear pair, \(\angle 1 \) and \(\angle 4 \) are a linear pair, and \(\angle 1 \) and \(\angle 3 \) are vertical angles. Tell whether the statement is true.

22. \(\angle 1 \equiv \angle 2 \)
23. \(\angle 1 \equiv \angle 3 \)
24. \(\angle 1 \equiv \angle 4 \)
25. \(\angle 3 \equiv \angle 2 \)
26. \(\angle 2 \equiv \angle 4 \)
27. \(m\angle 3 + m\angle 4 = 180^\circ \)

ALGEBRA Find the measure of each angle in the diagram.

28. \((3y + 11)^\circ = (7x + 4)^\circ \)
29. \((4x - 22)^\circ = (5x + 5)^\circ \)
PROVING THEOREM 2.4 Prove the second case of the Congruent Supplements Theorem where two angles are supplementary to congruent angles.

GIVEN
- ∠1 and ∠2 are supplements.
- ∠3 and ∠4 are supplements.
- ∠1 ≅ ∠4

PROVE
- ∠2 ≅ ∠3

PROVING THEOREM 2.5 Copy and complete the proof of the first case of the Congruent Complements Theorem where two angles are complementary to the same angles.

GIVEN
- ∠1 and ∠2 are complements.
- ∠1 and ∠3 are complements.

PROVE
- ∠2 ≅ ∠3

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ∠1 and ∠2 are complements. ∠1 and ∠3 are complements.</td>
<td>1. ?</td>
</tr>
<tr>
<td>2. m∠1 + m∠2 = 90° m∠1 + m∠3 = 90°</td>
<td>2. ?</td>
</tr>
<tr>
<td>3. ?</td>
<td>3. Transitive Property of Equality</td>
</tr>
<tr>
<td>5. ∠2 ≅ ∠3</td>
<td>5. ?</td>
</tr>
</tbody>
</table>

CHALLENGE Sketch two intersecting lines j and k. Sketch another pair of lines l and m that intersect at the same point as j and k and that bisect the angles formed by j and k. Line l is perpendicular to line m. Explain why this is true.

In the diagram, m∠CBY = 80° and XY bisects ∠ABC. Give two more true statements about the diagram.

DRAWING CONCLUSIONS In Exercises 31–34, use the given statement to name two congruent angles. Then give a reason that justifies your conclusion.

31. In triangle GFE, GH bisects ∠EGF.

32. ∠1 is a supplement of ∠6, and ∠9 is a supplement of ∠6.

33. AB is perpendicular to CD, and AB and CD intersect at E.

34. ∠5 is complementary to ∠12, and ∠1 is complementary to ∠12.

35. Challenge Sketch two intersecting lines j and k. Sketch another pair of lines l and m that intersect at the same point as j and k and that bisect the angles formed by j and k. Line l is perpendicular to line m. Explain why this is true.
PROOF Use the given information and the diagram to prove the statement.

38. **GIVEN** ▶ \(\angle ABD \) is a right angle.
 \(\angle CBE \) is a right angle.
 PROVE ▶ \(\angle ABC \equiv \angle DBE \)

39. **GIVEN** ▶ \(JK \perp JM, KL \perp ML, \angle J \equiv \angle M, \angle K \equiv \angle L \)
 PROVE ▶ \(JM \perp ML \) and \(JK \perp KL \)

40. **MULTI-STEP PROBLEM** Use the photo of the folding table.
 a. If \(m \angle 1 = x^2 \), write expressions for the other three angle measures.
 b. Estimate the value of \(x \). What are the measures of the other angles?
 c. As the table is folded up, \(\angle 4 \) gets smaller. What happens to the other three angles? Explain your reasoning.

41. **PROVING THEOREM 2.5** Write a two-column proof for the second case of Theorem 2.5 where two angles are complementary to congruent angles.

WRITING PROOFS Write a two-column proof.

42. **GIVEN** ▶ \(\angle 1 \equiv \angle 3 \)
 PROVE ▶ \(\angle 2 \equiv \angle 4 \)

43. **GIVEN** ▶ \(\angle QRS \) and \(\angle PSR \) are supplementary.
 PROVE ▶ \(\angle QRL \equiv \angle PSR \)

44. **STAIRCASE** Use the photo and the given information to prove the statement.
 GIVEN ▶ \(\angle 1 \) is complementary to \(\angle 3 \).
 \(\angle 2 \) is complementary to \(\angle 4 \).
 PROVE ▶ \(\angle 1 \equiv \angle 4 \)

45. **TAKS REASONING** \(\angle STV \) is bisected by \(\overline{TW} \), and \(\overline{TX} \) and \(\overline{TW} \) are opposite rays. You want to show \(\angle STX \equiv \angle VTX \).
 a. Draw a diagram.
 b. Identify the **GIVEN** and **PROVE** statements for the situation.
 c. Write a two-column proof.
Match the statement with the property that it illustrates. (p. 112)

1. If \(\overline{HJ} \cong \overline{LM} \), then \(\overline{LM} \cong \overline{HJ} \).
 - A. Reflexive Property of Congruence

2. If \(\angle 1 \cong \angle 2 \) and \(\angle 2 \cong \angle 4 \), then \(\angle 1 \cong \angle 4 \).
 - B. Symmetric Property of Congruence

3. \(\angle XYZ \cong \angle XYZ \)
 - C. Transitive Property of Congruence

4. Write a two-column proof. (p. 124)
 - **GIVEN** \(\angle XWY \) is a straight angle.
 \(\angle ZWV \) is a straight angle.
 - **PROVE** \(\angle XWV \cong \angle ZWY \)

QUIZ for Lessons 2.6–2.7

Match the statement with the property that it illustrates. (p. 112)

1. If \(\overline{HJ} \cong \overline{LM} \), then \(\overline{LM} \cong \overline{HJ} \).
 - A. Reflexive Property of Congruence

2. If \(\angle 1 \cong \angle 2 \) and \(\angle 2 \cong \angle 4 \), then \(\angle 1 \cong \angle 4 \).
 - B. Symmetric Property of Congruence

3. \(\angle XYZ \cong \angle XYZ \)
 - C. Transitive Property of Congruence

4. Write a two-column proof. (p. 124)
 - **GIVEN** \(\angle XWY \) is a straight angle.
 \(\angle ZWV \) is a straight angle.
 - **PROVE** \(\angle XWV \cong \angle ZWY \)
Lessons 2.5–2.7

MULTIPLE CHOICE

1. **BISECTORS** In the diagram, \(BD \) bisects \(\angle ABC \) and \(BC \) bisects \(\angle DBE \). If \(m \angle ABE = 99^\circ \), what is \(m \angle DBC \)? **TEKS G.5.A**

![Diagram showing bisectors]

A) 33° B) 49.5° C) 66° D) 99°

2. **LUMBER** Jason is sawing a rectangular piece of lumber into beams. As shown, Jason cuts the board in half lengthwise to create two congruent pieces. He then cuts each of these pieces in half lengthwise. The original piece of lumber is 72 inches long by 40 inches wide. What is the width of one of the beams? (Neglect the width of the blade.) **TEKS G.5.B**

![Diagram showing lumber]

F) 5 inches G) 8 inches H) 10 inches J) 12 inches

3. **INTERSECTING LINES** Two lines intersect to form \(\angle 1, \angle 2, \angle 3, \) and \(\angle 4 \). The measure of \(\angle 3 \) is three times the measure of \(\angle 1 \), and the measure of \(\angle 1 \) is equal to the measure of \(\angle 2 \). What are the measures of the angles? **TEKS G.5.A**

![Diagram showing intersecting lines]

A) \(m \angle 1 = m \angle 2 = 45^\circ, m \angle 3 = m \angle 4 = 135^\circ \)
B) \(m \angle 1 = m \angle 2 = 135^\circ, m \angle 3 = m \angle 4 = 45^\circ \)
C) \(m \angle 1 = m \angle 2 = m \angle 3 = m \angle 4 = 45^\circ \)
D) \(m \angle 1 = m \angle 2 = m \angle 3 = m \angle 4 = 90^\circ \)

4. **SALES TAX** A formula that can be used to calculate the total cost of an item including sales tax is \(T = c(1 + s) \), where \(T \) is the total cost including sales tax, \(c \) is the cost not including sales tax, and \(s \) is the sales tax rate written as a decimal. Which of the following formulas can be used to find \(s \)? **TEKS a.6**

![Diagram showing sales tax]

A) \(s = T - 1 \) B) \(s = c(1 + T) \) C) \(s = \frac{T - 1}{c} \) D) \(s = \frac{T}{c} - 1 \)

5. **SPIDER WEB** Part of a spider web is shown below. \(\angle CAD \) and \(\angle DAE \) are complements and \(\overrightarrow{AB} \) and \(\overrightarrow{AF} \) are opposite rays. What can be concluded about \(\angle BAC \) and \(\angle EAF \)? **TEKS G.5.A**

![Diagram showing spider web]

A) \(m \angle BAC = m \angle EAF \)
B) \(m \angle BAC + m \angle EAF = 45^\circ \)
C) \(m \angle BAC + m \angle EAF = 90^\circ \)
D) \(m \angle BAC + m \angle EAF = 180^\circ \)

6. **RETAINING WALL** The cross section of a concrete retaining wall is shown below. Use the given information to find \(m \angle 1 \) in degrees. **TEKS G.5.A**

![Diagram showing retaining wall]

\[
m \angle 1 = m \angle 2 \\
13 = m \angle 3 = m \angle 4 \\
3 = 80^\circ \\
m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 = 360^\circ
\]
Using Inductive and Deductive Reasoning
When you make a conjecture based on a pattern, you use inductive reasoning. You use deductive reasoning to show whether the conjecture is true or false by using facts, definitions, postulates, or proven theorems. If you can find one counterexample to the conjecture, then you know the conjecture is false.

Understanding Geometric Relationships in Diagrams
The following can be assumed from the diagram:
- \(A, B, \) and \(C \) are coplanar.
- \(\angle ABH \) and \(\angle HBF \) are a linear pair.
- Plane \(T \) and plane \(S \) intersect in \(\overline{BC} \).
- \(\overrightarrow{CD} \) lies in plane \(S \).
- \(\angle ABC \) and \(\angle HBF \) are vertical angles.
- \(\overline{AB} \perp \) plane \(S \).

Diagram assumptions are reviewed on page 97.

Writing Proofs of Geometric Relationships
You can write a logical argument to show a geometric relationship is true. In a two-column proof, you use deductive reasoning to work from GIVEN information to reach a conjecture you want to PROVE.

\[\text{GIVEN} \quad \text{The hypothesis of an if-then statement} \]
\[\text{PROVE} \quad \text{The conclusion of an if-then statement} \]

Statements

1. Hypothesis
 - **Reasons**
 - Given

\[n. \text{ Conclusion} \]

Statement Based on Facts

- Use postulates, proven theorems, definitions, and properties of numbers and congruence as reasons.

Proof summary is on page 114.
2 CHAPTER REVIEW

REVIEW KEY VOCABULARY

- conjecture, p. 73
- inductive reasoning, p. 73
- counterexample, p. 74
- conditional statement, p. 79
 converse, inverse, contrapositive
- if-then form, p. 79
 hypothesis, conclusion
- negation, p. 79
- equivalent statements, p. 80
- perpendicular lines, p. 81
- biconditional statement, p. 82
- deductive reasoning, p. 87
- line perpendicular to a plane, p. 98
- proof, p. 112
- two-column proof, p. 112
- theorem, p. 113

VOCABULARY EXERCISES

1. Copy and complete: A statement that can be proven is called a(n) ? .

2. WRITING Compare the inverse of a conditional statement to the converse of the conditional statement.

3. You know \(m\angle A = m\angle B \) and \(m\angle B = m\angle C \). What does the Transitive Property of Equality tell you about the measures of the angles?

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of Chapter 2.

2.1 Use Inductive Reasoning

EXAMPLE

Describe the pattern in the numbers 3, 21, 147, 1029, ..., and write the next three numbers in the pattern.

Each number is seven times the previous number.

\[
\begin{align*}
3 & \quad 21 & \quad 147 & \quad 1029 & \quad \ldots \\
\times 7 & & \times 7 & & \times 7 & \\
\end{align*}
\]

So, the next three numbers are 7203, 50,421, and 352,947.

EXERCISES

4. Describe the pattern in the numbers \(-20,480, -5120, -1280, -320, \ldots\)
 Write the next three numbers.

5. Find a counterexample to disprove the conjecture:
 If the quotient of two numbers is positive, then the two numbers must both be positive.
2.2 Analyze Conditional Statements

Example

Write the if-then form, the converse, the inverse, and the contrapositive of the statement “Black bears live in North America.”

- **a.** If-then form: If a bear is a black bear, then it lives in North America.
- **b.** Converse: If a bear lives in North America, then it is a black bear.
- **c.** Inverse: If a bear is not a black bear, then it does not live in North America.
- **d.** Contrapositive: If a bear does not live in North America, then it is not a black bear.

Exercises

6. Write the if-then form, the converse, the inverse, and the contrapositive of the statement “An angle whose measure is 34° is an acute angle.”

7. Is this a valid definition? Explain why or why not.
 “If the sum of the measures of two angles is 90°, then the angles are complementary.”

8. Write the definition of equiangular as a biconditional statement.

2.3 Apply Deductive Reasoning

Example

Use the Law of Detachment to make a valid conclusion in the true situation.

If two angles have the same measure, then they are congruent. You know that \(m\angle A = m\angle B \).

- Because \(m\angle A = m\angle B \) satisfies the hypothesis of a true conditional statement, the conclusion is also true. So, \(\angle A \cong \angle B \).

Exercises

9. Use the Law of Detachment to make a valid conclusion.
 If an angle is a right angle, then the angle measures 90°. \(\angle B \) is a right angle.

10. Use the Law of Syllogism to write the statement that follows from the pair of true statements.
 If \(x = 3 \), then \(2x = 6 \).
 If \(4x = 12 \), then \(x = 3 \).

11. What can you say about the sum of any two odd integers? Use inductive reasoning to form a conjecture. Then use deductive reasoning to show that the conjecture is true.
CHAPTER REVIEW

2.4 Use Postulates and Diagrams

Example

\[\angle ABC, \text{ an acute angle, is bisected by } \overrightarrow{BE}. \text{ Sketch a diagram that represents the given information.} \]

1. Draw \(\angle ABC, \) an acute angle, and label points \(A, B, \) and \(C. \)
2. Draw angle bisector \(\overrightarrow{BE}. \) Mark congruent angles.

Exercises

12. Straight angle \(CDE \) is bisected by \(\overrightarrow{DK}. \) Sketch a diagram that represents the given information.

13. Which of the following statements cannot be assumed from the diagram?
 - (A) \(A, B, \) and \(C \) are coplanar.
 - (B) \(\overrightarrow{CD} \perp \text{ plane } P \)
 - (C) \(A, F, \) and \(B \) are collinear.
 - (D) Plane \(M \) intersects plane \(P \) in \(\overrightarrow{FH}. \)

2.5 Reason Using Properties from Algebra

Example

Solve \(3x + 2(2x + 9) = -10. \) Write a reason for each step.

\[
\begin{align*}
3x + 2(2x + 9) &= -10 & \text{Write original equation.} \\
3x + 4x + 18 &= -10 & \text{Distributive Property} \\
7x + 18 &= -10 & \text{Simplify.} \\
7x &= -28 & \text{Subtraction Property of Equality} \\
x &= -4 & \text{Division Property of Equality}
\end{align*}
\]

Exercises

Solve the equation. Write a reason for each step.

14. \(-9x - 21 = -20x - 87 \)
15. \(15x + 22 = 7x + 62 \)
16. \(3(2x + 9) = 30 \)
17. \(5x + 2(2x - 23) = -154 \)
2.6 Prove Statements about Segments and Angles

Example

Prove the Reflexive Property of Segment Congruence.

Given

\overline{AB} is a line segment.

Prove

$\overline{AB} \cong \overline{AB}$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. \overline{AB} is a line segment.</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. AB is the length of \overline{AB}.</td>
<td>2. Ruler Postulate</td>
</tr>
<tr>
<td>3. $\overline{AB} \cong \overline{AB}$</td>
<td>3. Reflexive Property of Equality</td>
</tr>
<tr>
<td>4. $\overline{AB} \cong \overline{AB}$</td>
<td>4. Definition of congruent segments</td>
</tr>
</tbody>
</table>

Exercises

Name the property illustrated by the statement.

18. If $\angle DEF \cong \angle JKL$, then $\angle JKL \cong \angle DEF$.

19. $\angle C \cong \angle C$

20. If $MN = PQ$ and $PQ = RS$, then $MN = RS$.

2.7 Prove Angle Pair Relationships

Example

Given $\angle 5 \cong \angle 6$

Prove $\angle 4 \cong \angle 7$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\angle 5 \cong \angle 6$</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $\angle 4 \cong \angle 5$</td>
<td>2. Vertical Angles Congruence Theorem</td>
</tr>
<tr>
<td>3. $\angle 4 \cong \angle 6$</td>
<td>3. Transitive Property of Congruence</td>
</tr>
<tr>
<td>4. $\angle 6 \cong \angle 7$</td>
<td>4. Vertical Angles Congruence Theorem</td>
</tr>
<tr>
<td>5. $\angle 5 \cong \angle 7$</td>
<td>5. Transitive Property of Congruence</td>
</tr>
</tbody>
</table>

Exercises

In Exercises 22 and 23, use the diagram at the right.

22. If $m\angle 1 = 114^\circ$, find $m\angle 2$, $m\angle 3$, and $m\angle 4$.

23. If $m\angle 4 = 57^\circ$, find $m\angle 1$, $m\angle 2$, and $m\angle 3$.

24. Write a two-column proof.

Given

$\angle 3$ and $\angle 2$ are complementary.
$m\angle 1 + m\angle 2 = 90^\circ$

Prove

$\angle 3 \cong \angle 1$
Sketch the next figure in the pattern.

1.

2.

Describe the pattern in the numbers. Write the next number.

3. $-6, -1, 4, 9, \ldots$

4. $100, -50, 25, -12.5, \ldots$

In Exercises 5–8, write the if-then form, the converse, the inverse, and the contrapositive for the given statement.

5. All right angles are congruent.

6. Frogs are amphibians.

7. $5x + 4 = -6$, because $x = -2$.

8. A regular polygon is equilateral.

9. If you decide to go to the football game, then you will miss band practice. Tonight, you are going the football game. Using the Law of Detachment, what statement can you make?

10. If Margot goes to college, then she will major in Chemistry. If Margot majors in Chemistry, then she will need to buy a lab manual. Using the Law of Syllogism, what statement can you make?

Use the diagram to write examples of the stated postulate.

11. A line contains at least two points.

12. A plane contains at least three noncollinear points.

13. If two planes intersect, then their intersection is a line.

Solve the equation. Write a reason for each step.

14. $9x + 31 = -23$

15. $-7(-x + 2) = 42$

16. $26 + 2(3x + 11) = -18x$

In Exercises 17–19, match the statement with the property that it illustrates.

17. If $\angle RST \cong \angle XYZ$, then $\angle XYZ \cong \angle RST$.

18. $\overline{PQ} \cong \overline{PQ}$

19. If $\overline{FG} \cong \overline{JK}$ and $\overline{JK} \cong \overline{LM}$, then $\overline{FG} \cong \overline{LM}$.

20. Use the Vertical Angles Congruence Theorem to find the measure of each angle in the diagram at the right.

21. Write a two-column proof.

GIVEN $\overline{AX} \cong \overline{DX}$, $\overline{XB} \cong \overline{XC}$

PROVE $\overline{AC} \cong \overline{BD}$
Example 1
Simplify rational expressions

<table>
<thead>
<tr>
<th>Expression</th>
<th>Simplified</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (\frac{2x^2}{4xy})</td>
<td>(\frac{x}{2y})</td>
<td>To simplify a rational expression, factor the numerator and denominator. Then divide out any common factors.</td>
</tr>
<tr>
<td>b. (\frac{3x^2 + 2x}{9x + 6})</td>
<td>(\frac{x(3x+2)}{3(3x+2)} = \frac{x}{3})</td>
<td></td>
</tr>
</tbody>
</table>

Example 2
Simplify radical expressions

<table>
<thead>
<tr>
<th>Expression</th>
<th>Simplified</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (\sqrt{54})</td>
<td>(3\sqrt{6})</td>
<td>Use product property of radicals.</td>
</tr>
<tr>
<td>b. (2\sqrt{5} - 5\sqrt{2} - 3\sqrt{5})</td>
<td>(-\sqrt{5} - 5\sqrt{2})</td>
<td>Combine like terms.</td>
</tr>
<tr>
<td>c. ((3\sqrt{2})(-6\sqrt{6}))</td>
<td>(-18\sqrt{12})</td>
<td>Use product property and associative property.</td>
</tr>
<tr>
<td></td>
<td>(-18 \cdot 2\sqrt{3})</td>
<td>Simplify.</td>
</tr>
<tr>
<td></td>
<td>(= -36\sqrt{3})</td>
<td>Simplify.</td>
</tr>
</tbody>
</table>

Exercises

Example 1
Simplify the expression, if possible.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\frac{5x^4}{20x^2})</td>
<td>(\frac{x^2}{4})</td>
</tr>
<tr>
<td>2. (\frac{-12ab^3}{9a^2b})</td>
<td>(-\frac{4b}{3})</td>
</tr>
<tr>
<td>3. (\frac{5m + 35}{5})</td>
<td>(m + 7)</td>
</tr>
<tr>
<td>4. (\frac{36m - 48m}{6m})</td>
<td>(-4)</td>
</tr>
<tr>
<td>5. (\frac{k + 3}{-2k + 3})</td>
<td>Simplify.</td>
</tr>
<tr>
<td>6. (\frac{m + 4}{m^2 + 4m})</td>
<td>Simplify.</td>
</tr>
<tr>
<td>7. (\frac{12x + 16}{8 + 6x})</td>
<td>Simplify.</td>
</tr>
<tr>
<td>8. (\frac{3x^3}{5x + 8x^2})</td>
<td>Simplify.</td>
</tr>
</tbody>
</table>

Example 2
Simplify the expression, if possible. All variables are positive.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. (\frac{3x^2 - 6x}{6x^2 - 3x})</td>
<td>Simplify.</td>
</tr>
<tr>
<td>10. (\sqrt{75})</td>
<td>(\sqrt{3} \cdot 5)</td>
</tr>
<tr>
<td>11. (-\sqrt{180})</td>
<td>(-6\sqrt{5})</td>
</tr>
<tr>
<td>12. (\pm \sqrt{128})</td>
<td>(\pm 8\sqrt{2})</td>
</tr>
<tr>
<td>13. (\sqrt{2} - \sqrt{18} + \sqrt{6})</td>
<td>Simplify.</td>
</tr>
<tr>
<td>14. (\sqrt{28} - \sqrt{63} - \sqrt{35})</td>
<td>Simplify.</td>
</tr>
<tr>
<td>15. (4\sqrt{8} + 3\sqrt{32})</td>
<td>(4\sqrt{2} \cdot 4)</td>
</tr>
<tr>
<td>16. ((6\sqrt{5})(2\sqrt{2}))</td>
<td>(12\sqrt{10})</td>
</tr>
<tr>
<td>17. ((-4\sqrt{10})(-5\sqrt{5}))</td>
<td>(20\sqrt{50})</td>
</tr>
<tr>
<td>18. ((2\sqrt{6})^2)</td>
<td>(4 \cdot 6)</td>
</tr>
<tr>
<td>19. (\sqrt{(25)^2})</td>
<td>(25)</td>
</tr>
<tr>
<td>20. (\sqrt{x^2})</td>
<td>(x)</td>
</tr>
<tr>
<td>21. (\sqrt{-(a)^2})</td>
<td>(-a)</td>
</tr>
<tr>
<td>22. (\sqrt{(3y)^2})</td>
<td>(3y)</td>
</tr>
<tr>
<td>23. (\sqrt{3^2 + 2^2})</td>
<td>(\sqrt{13})</td>
</tr>
<tr>
<td>24. (\sqrt{h^2 + k^2})</td>
<td>(h^2 + k^2)</td>
</tr>
</tbody>
</table>
A pattern exists among digits in the ones place when 3 is raised to different powers, as shown in the table. Use the table to find the digit in the ones place in \(3^{22}\).

<table>
<thead>
<tr>
<th>Power of 3</th>
<th>Number in Ones Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3^1)</td>
<td>3</td>
</tr>
<tr>
<td>(3^2)</td>
<td>9</td>
</tr>
<tr>
<td>(3^3)</td>
<td>7</td>
</tr>
<tr>
<td>(3^4)</td>
<td>1</td>
</tr>
<tr>
<td>(3^5)</td>
<td>3</td>
</tr>
<tr>
<td>(3^6)</td>
<td>9</td>
</tr>
<tr>
<td>(3^7)</td>
<td>7</td>
</tr>
<tr>
<td>(3^8)</td>
<td>1</td>
</tr>
<tr>
<td>(3^9)</td>
<td>3</td>
</tr>
</tbody>
</table>

Solution
From the table, you can see that the pattern repeats itself every fourth power. So, divide 22 by 4 to get a remainder of 2.

\[
22 \div 4 = 5 + \frac{2}{4} \\
22 = 4 \cdot 5 + 2 \\
3^{22} = 3^4 \cdot 5 + 2 \\
3^{22} = (3^4)^5 \cdot 3^2
\]

According to the pattern, \(3^{20} = (3^4)^5\) has a 1 in the ones place. So, the digit in the ones place in \(3^{22}\) is the same as the digit in the ones place in \(3^2\), or 9.

- The digit in the ones place in \(3^{22}\) is 9.
SOLVING PROBLEMS ON TAKS

Below are examples of solving problems in multiple choice format. Try solving the problems before looking at the solutions. (Cover the solutions with a piece of paper.) Then check your solutions against the ones given.

1. Mandy is renting a reception hall for her friend’s surprise birthday party. It costs $75 to rent the hall plus an additional $8 per person for food and drinks. Mandy’s budget for the party is $275. Which equation can be used to determine the maximum number of people \(n \) who can attend the party?

 A \(8n - 75 = 275 \)

 B \(8n + 75 = 275 \)

 C \(8 - 75n = 275 \)

 D \(8 + 75n = 275 \)

 Solution

 You need to determine the correct equation that can be used to solve the problem.

 The cost per person is $8, so the cost for \(n \) people is \(8n \). This number plus the cost to rent the hall, $75, gives the total cost of the party, or $275.

 So, the equation is \(8n + 75 = 275 \). The correct answer is B.

2. Nick is making beaded bracelets to sell at a craft show. A bag of beads costs $6 plus 7% sales tax and makes about 8 bracelets. What other information is needed to determine the minimum number of bags of beads Nick needs to purchase?

 F The number of bracelets he plans to make

 G The number of beads in each bracelet

 H The number of beads in each bag

 J The time it takes to make one bracelet

 Solution

 You need to determine what information is missing in order to solve the problem.

 If you want to determine the number of bags of beads Nick needs to purchase, you need to know how many bracelets he plans to make.

 So, the correct answer is F.

3. Olivia and Paul are making boxes of cookies for a fundraiser. Together they made 40 boxes of cookies. Olivia can wrap a box of cookies in 2 minutes, and Paul can wrap a box of cookies in 3 minutes. Each box contains 10 cookies. What information is NOT needed to find whether the friends can wrap all of the boxes of cookies in 45 minutes if they work together?

 A The time it takes to wrap the boxes

 B The rate at which each friend wraps boxes

 C The number of cookies in each box

 D The number of boxes of cookies

 Solution

 You need to determine what information is necessary to solve the problem.

 Because it does not matter how many cookies are in each box to determine if all of the boxes can be wrapped in 45 minutes, the correct answer is C.
PRACTICE FOR TAKS OBJECTIVE 10

1. The student seating section of a football stadium has 40 rows, with 36 seats in each row. Student admission to a game is $4 per person. If student tickets for the first game sell out, which method can be used to calculate the total amount of student ticket sales for that game?
 A. Multiply 40 by 36 and add $4.
 B. Add 40 and 36 and multiply by $4.
 C. Multiply 40 by 36 and multiply by $4.
 D. Add 40 and $4 and multiply by 36.

2. A pattern exists when you find the sum of the first \(n \) even positive integers, as shown in the table below. Which expression represents this pattern?

<table>
<thead>
<tr>
<th>(n)</th>
<th>Sum</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 = 2</td>
<td>(2 = 1^2 + 1)</td>
</tr>
<tr>
<td>2</td>
<td>2 + 4 = 6</td>
<td>(6 = 2^2 + 2)</td>
</tr>
<tr>
<td>3</td>
<td>2 + 4 + 6 = 12</td>
<td>(12 = 3^2 + 3)</td>
</tr>
</tbody>
</table>

 F. \(n + 1 \)
 G. \(n^2 + 1 \)
 H. \(n^2 - n \)
 J. \(n^2 + n \)

3. A group of students is purchasing concert tickets. The total price of their tickets before any discounts is $820. Each person in the group receives a student discount, bringing the total price for the group down to $692. What other information is needed to determine the amount of discount per person?
 A. The amount of money each student takes on the trip
 B. The percentage of the discount
 C. The number of students on the trip
 D. The number of days the field trip lasts

4. Alicia’s garage charged $126 for parts and $38 per hour for labor to repair Andy’s car. The total cost for the repair was $278. Which equation can Andy use to find the number of hours \(h \) it took to repair his car?
 F. \(38 - 126h = 278 \)
 G. \(38 + 126h = 278 \)
 H. \(38h - 126 = 278 \)
 J. \(38h + 126 = 278 \)

5. Ben surveyed 5 people about the TV they watch and the extracurricular activities they do. He recorded his results in a table.

<table>
<thead>
<tr>
<th>Hours spent watching TV per week</th>
<th>Number of extracurricular activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

Which data display would be most helpful in determining whether there is a correlation between the amount of TV watched and the number of extracurricular activities?
 A. stem-and-leaf plot
 B. scatter plot
 C. bar graph
 D. histogram

MIXED TAKS PRACTICE

6. Jane can walk 3 miles per hour. At this rate, how far can she walk in 40 minutes? \textit{TAKS Obj. 9}
 F. 2 miles
 G. 6 miles
 H. 8 miles
 J. 12 miles
MIXED TAKS PRACTICE

7. Which of the following statements about the parabola shown below is true? TAKS Obj. 1

A The vertex is at (3, 1).
B The minimum value is at (–1, –4).
C The maximum value is at (1, 3).
D The parabola opens upward.

8. Frank and Edith are selling calendars. Frank sold 9 desk and 3 wall calendars for $70.50. Edith sold 4 desk and 6 wall calendars for $71. Which system of equations can be used to find the prices for one desk calendar \(d\) and one wall calendar \(w\)? TAKS Obj. 4

F \[9d + 3w = 71 \quad 4d + 6w = 70.5\]
G \[9d + 3w = 70.5 \quad 4d + 6w = 71\]
H \[9d + 4w = 71 \quad 3d + 6w = 70.5\]
J \[9d + 4w = 70.5 \quad 4d + 6w = 71\]

9. Pencils cost $.50 each and notebooks cost $2.50 each. Which inequality describes the number of notebooks \(n\) and pencils \(p\) that can be purchased for $10 or less? TAKS Obj. 4

A \[2.5n + 0.5p < 10\]
B \[0.5n + 2.5p < 10\]
C \[2.5n + 0.5p \leq 10\]
D \[0.5n + 2.5p \leq 10\]

10. Which equation represents the line that passes through the points (–3, 2) and (0, 8)? TAKS Obj. 3

F \[y = 2x + 8\]
G \[y = 2x - 8\]
H \[y = 0.5x + 8\]
J \[y = 0.5x - 8\]

11. Which expression is equivalent to \(-4(x + 5) + 2(2x + 1)\)? TAKS Obj. 2

A \[-18\]
B \[-8x - 18\]
C \[-8x + 6\]
D \[-8x + 22\]

12. Which linear equation best represents the graph shown below? TAKS Obj. 3

F \[y = 3x + 1\]
G \[y = -3x + 1\]
H \[y = \frac{1}{3}x + 1\]
J \[y = -\frac{1}{3}x + 1\]

13. GRIDDED ANSWER Of the 750 students in Hannah’s school, 72% have at least one pet. Of those 72% with pets, 30% own dogs and 40% own cats. If 5% of the students who have pets own two or more dogs, how many students own exactly one dog? TAKS Obj. 9

Record your answer and fill in the bubbles on your answer document. Be sure to use the correct place value.